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Thomas Bonis MCF Université Gustave Eiffel Examinateur
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2 CHAPTER 1. INTRODUCTION

1.1 Introduction

My thesis mainly lies at the interface between probability theory and differential geometry. From
my perspective, these two beautiful fields of mathematics have always been closely connected.
The interplay of these two fields has led to significant advances, enabling the modeling of
sophisticated systems in physics, finance, machine learning, and beyond. For example, the
geometric perspective allows probabilists to leverage concepts like curvature [12], Riemannian
metrics [8, 9], and geometric structures [5] to gain deeper insights into probabilistic phenomena
such as the theory of concentration of measure, with applications in algorithm optimization and
machine learning (e.g. [58, 85]). Of particular interest for us are the considerations of stochastic
processes in curved spaces. We refer to [43, 67] for the definition of Brownian motions and
stochastic differential equations (SDEs) on manifolds.

The manifold hypothesis has become a foundational concept in modern machine learning and
topological data analysis. It posits that high-dimensional data often lie on a low-dimensional
manifold embedded within a higher-dimensional space [84, 103, 114]. This paradigm under-
pins the efficiency of nonparametric methods in high-dimensional statistical models and has
spurred extensive research into manifold learning and analysis, e.g. [52, 91, 99]. For example,
[37] recently applied optimal transport to measure estimation on manifolds in this framework,
providing a robust nonparametric framework that accurately recovers distributions on complex,
high-dimensional data spaces with theoretical guarantees of efficiency and optimality. Never-
theless, previous studies were based on independent and identically distributed (i.i.d.) samples,
we are interested in this thesis with data stemming from stochastic processes exploring the
manifolds. The exploration of complex structures in view of understanding their geometric
and topological properties is an old idea, think of the PageRank algorithm for example [94].
Therefore, building on the foundational connections between probability theory and differential
geometry, we embark on our doctoral journey with an exploration of random walks and diffusion
processes on (random geometric graphs) on manifolds. This study opens up new perspectives
for us, revealing exciting ways to reconstruct manifold information through empirical obser-
vations of trajectories, explore minimax optimality in density estimation, and understand the
intricate dynamics of stochastic processes on manifolds such as their long-time behavior or their
contractivity properties.

As we navigate between these layers of complexity, our work gradually focuses on three central
themes: the convergence properties of random operators on manifolds [61], the estimation of
invariant measures associated with diffusion processes [38], and the minimax convergence rates
in density estimation on manifolds. More precisely, this document is organized as follows.
In this introductory chapter, we introduce various preliminary mathematical concepts necessary
to lay the groundwork for this thesis. Then, a summary of the thesis’s contributions will be
provided in Section 1.6.
In Chapter 2, we investigate the convergence of random operators associated with points sam-
pled on smooth compact and connected manifolds, when their number tends to infinity. A
particular emphasis is put on the convergence of graph Laplacians built from these points. This
question was already much considered in the literature [55, 115, 24, 25]. Here, we extend the
existing results by weakening the assumptions on the kernel functions used in the graph con-
struction. This provides a uniform convergence rate for wider ranges of kernel-induced random
operators, including the exact generator of the k-nearest neighbor (k-NN) random walk. We
use these limits to establish the functional convergence, when the sample size grows to infinity,
of the random walks on the graph to stochastic diffusive processes on the manifold.
Then, in Chapter 3, we focus on the convergence properties in long time of occupation measures
associated with diffusion processes (Xt)t≥0 on smooth compact connected manifolds, that can
be the limiting processes obtained in the previous chapter. We study these convergences in
Wasserstein distance, when the occupation measures are smoothed by the convolution with an
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appropriate kernel. The limits are the invariant measures of the diffusions. Thanks to the regu-
larization with the convolution, the convergence rates that we obtain improve those in [121]. We
establish the optimality of the convergence rates in the minimax sense. From the perspective of
manifold estimation, our work serves as a counterpart to the study conducted by Divol in [37],
with the key distinction that our data comprises trajectories of stochastic processes rather than
independent and identically distributed (i.i.d.) samples. Specifically, we consider the estimation
problem where the observed data are continuous sample paths of a diffusion process evolving
on a manifold.
Finally, in Chapter 4, we revisit the problem of density estimation on manifolds introduced in
[37], putting aside the stochastic process point of view for the moment. We extend these results
as well as those in related works [118, 90]. Specifically, we will demonstrate that the minimax
convergence rate established in [37, 90] holds for a broader class of density functions, not only
the one that are bounded below by a positive constant. Additionally, this provides a conver-
gence theorem generalizing the result in [118] in the case of density functions with possibly
unbounded support in Rm. An almost sure convergence result is also provided for the compact
manifold setting.

We start with presenting the fundamental concepts and basic results across various fields, in-
cluding Stochastic Differential Equations (Section 1.2), Differential Geometry (Sections 1.3 and
1.4), and Operator Theory (Section 1.5) in the purpose of studying stochastic differential equa-
tions on manifolds. We then present the main results of the thesis in Section 1.6.

1.2 Fundamentals of Stochastic Differential Equations

Stochastic differential equations (SDEs) are fundamental tools in modeling systems that evolve
over time under the influence of both deterministic and random forces. They have widespread
applications in fields such as physics, finance, biology, and engineering. In this section, we
summarize some basic concepts related to SDEs in the Euclidean space Rm, which will later
serve as a foundation for developing the theory of SDEs on manifolds. The interested reader is
referred to [68, 48, 101].
Let us consider a probability space (Ω,F ,P). An SDE in the Euclidean framework is charac-
terized by the following components:

• A drift coefficient vector b : Rm → Rm, representing the deterministic part of the system’s
evolution.

• A volatility (or diffusion) coefficient matrix σ = (σik)1⩽i⩽m, 1⩽k⩽l, where σ : Rm → Rm×l,
capturing the random fluctuations.

• A driving l-dimensional Brownian motion process B = (B1
t , B

2
t , . . . , B

l
t)t⩾0, which intro-

duces the stochasticity into the system. The Brownian motion B is adapted to a filtration
(Ft)t⩾0 that satisfies the usual hypotheses: it is right-continuous and complete.

• An F0-measurable random variable X0 independent from B that will be the initial con-
dition.

To focus on the essential ideas without unnecessary complications, we assume that the functions
b and σ are continuous.
Let us now formalize our notations and go deeper into the properties of SDEs.

1.2.1 Strong Solutions, Uniqueness, and Explosion

In the study of SDEs, it is crucial to understand the concept of strong solutions, the uniqueness,
and the explosion of SDE solutions.
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Definition 1.2.1 (Strong Solution of an SDE). [73, p. 336], [68, p. 163], [67, p. 7] Let
(Ω,F , (Ft)t⩾0,P) be a filtered probability space, and consider the filtration, Brownian motion,
initial condition, drift and volatility functions introduced above. Let τ be a (Ft)-stopping time,
and let X = {Xt : 0 ⩽ t < τ} be a (Ft)-adapted continuous semimartingale defined up to time
τ . We say that X is a strong solution of the stochastic differential equation starting from X0

dXt = b(Xt) dt+ σ(Xt) dBt, (1.1)

if, for all t ⩾ 0, the following integral equation holds:

Xt = X0 +

∫ t∧τ

0
b(Xs) ds+

∫ t∧τ

0
σ(Xs) dBs, (1.2)

where
∫
·dBs denotes the Itô integral [68, Chapter II].

Notice that the definition of a strong solution can be extended to SDEs driven by other stochas-
tic processes, such as fractional Brownian motion or Lévy processes. In such cases, the integrals
are interpreted in the sense appropriate to the driving process (e.g., the Riemann-Stieltjes in-
tegral or the Itô integral for Lévy processes).

A fundamental question in the theory of SDEs is under what conditions does a unique strong
solution exist. The following theorem addresses this question.

Theorem 1.2.2 (Existence and Uniqueness of Strong Solutions). [75, pp. 287–289], [67, Thm.
1.1.8]

Suppose that the functions b and σ are locally Lipschitz continuous. That is, for every
compact set K ⊂ Rm, there exists a constant LK > 0 such that for all x, y ∈ K,

∥b(x)− b(y)∥+ ∥σ(x)− σ(y)∥ ⩽ LK∥x− y∥.

Then, for any F0-measurable initial condition X0, the SDE (1.1) has a unique strong solution
X = {Xt : 0 ⩽ t < τ} up to an explosion time τ . In other words, for any other solution
Y = {Yt : 0 ⩽ t < τ ′} of the same SDE with the same initial condition, we have τ ′ ⩽ τ and

Yt = Xt for all t < τ ′.

Furthermore, on the event {τ < +∞}, we have almost surely that limt→τ ∥Xt∥ = ∞, meaning
that τ is the explosion time of X.

This theorem assures us that under the local Lipschitz condition, the SDE has a unique maximal
strong solution. However, it does not guarantee that the solution exists for all time. Solutions
may explode, becoming unbounded in finite time.

Example 1.2.3. Consider the one-dimensional SDE:

dXt = X3
t dt+X2

t dBt, X0 = 1.

The unique solution for this SDE is Xt =
1

1−Bt
. We can see that even though the coefficients are

continuous, the solution for the above SDE explodes in finite time. More precisely, the explosion
time for this solution is τ1 := inf{t : Bt ≥ 1}.

A natural question arises: under what conditions can we ensure that solutions to an SDE do not
explode? The following theorem provides a sufficient condition that is weaker than Lipschitz
continuity.
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Theorem 1.2.4 (Non-Explosiveness Criterion). [68, Thm. 2.4, p. 177]

Suppose that the functions b and σ are linearly bounded; that is, there exists a constant C > 0
such that for all x ∈ Rm,

∥b(x)∥+ ∥σ(x)∥ ⩽ C(1 + ∥x∥).

Then, for any initial condition X0, the solution Xt of the SDE (1.1) exists for all t ⩾ 0 and
does not explode. Moreover, if E[∥X0∥2] <∞, then

E[∥Xt∥2] <∞ for all t ⩾ 0.

This theorem indicates that if the coefficients of the SDE grow at most linearly, the solution
remains finite for all time, and its second moment is finite, provided the initial condition has a
finite second moment.

1.2.2 Weak Solutions

In some situations, it is important to consider the distribution of solutions rather than their
specific sample paths. This leads to the concept of weak solutions, where the focus is on the
existence of a probability space and processes satisfying the SDE in distribution.

Definition 1.2.5 (Weak Solution of an SDE). A tuple (Ω,F , (Ft)t⩾0,P, ;B,X0, X) is called a
weak solution of the SDE (1.1) if:

• (Ω,F , (Ft)t⩾0,P) is a filtered probability space satisfying the usual hypotheses.

• B = (Bt)t⩾0 is an l-dimensional Brownian motion adapted to the filtration (Ft)t⩾0.

• A F0-measurable random variable X0.

• X = (Xt)t⩾0 is an Rm-valued continuous adapted process satisfying the SDE (1.1) with
initial condition X0.

In a weak solution, the probability space, the Brownian motion and the initial condition are
part of the solution, rather than being prescribed in advance.

An important relationship exists between the uniqueness of strong solutions and weak solutions.

Theorem 1.2.6 (Strong Uniqueness Implies Weak Uniqueness). [68, p. 166]

If the SDE (1.1) has a unique strong solution for every initial condition X0 = x0 ∈ Rm, then it
also has a unique weak solution. Specifically, for any two weak solutions (Ω,F , (Ft),P;B, x0, X)

and
(
Ω̃, F̃ , (F̃t), P̃; B̃, x0, X̃

)
, the laws of X and X̃ are identical:

L(X) = L(X̃).

Notation 1.2.7. In what follows, we will denote by Px0 the distribution associated to the weak
solution with initial position x0 and Ex0 will be the corresponding expectation.

This theorem implies that the distribution of the solution is uniquely determined by the coeffi-
cients of the SDE and the initial condition when strong uniqueness holds.

Corollary 1.2.8. If the SDE (1.1) has a unique strong solution, then the solution X is adapted
to the natural filtration generated by the driving Brownian motion B.
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1.2.3 Semi-group and generators

Now, suppose that for each x0 ∈ Rm, the weak solution of the SDE (1.1) started from X0 = x0
exists, is unique, and does not explode (e.g., when b and σ are globally Lipschitz continuous).
We can then define a family of operators that describe the evolution of the system.

Definition 1.2.9 (Semigroup of an SDE). For any t ⩾ 0 and any bounded measurable function
f : Rm → R, define

Ptf(x0) = Ex0 [f(Xt)],

where (Xt) is a weak solution of the SDE (1.1) starting from x0. The family of operators (Pt)t⩾0

is called the semigroup of the SDE (1.1).

The semigroup (Pt)t⩾0 satisfies the following property that reflects the Markovian nature of the
stochastic process Xt:

Proposition 1.2.10 (Semigroup Property). For any s, t ⩾ 0, and any bounded measurable
function f , we have

Ps(Ptf) = Ps+tf.

The generator of the semigroup provides information about the infinitesimal behavior of the
process. It is defined as follows.

Definition 1.2.11 (Generator of a semigroup). Given a semigroup (Pt)t⩾0 acting on a Banach
space B, the generator A is defined on the domain

D(A) =

{
f ∈ B

∣∣ lim
t→0+

Ptf − f

t
exists in B

}
,

and for f ∈ D(A), the generator is given by

Af = lim
t→0+

Ptf − f

t
.

In the context of SDEs, the generator can often be explicitly calculated.

Proposition 1.2.12 (Generator of an SDE). [68, Thm 6.1]
Consider the semigroup (Pt)t⩾0 associated with the SDE (1.1). For any function f ∈ C2

c (R
m)

(twice continuously differentiable with compact support), we have

lim
t→0+

Ptf − f

t
= Af in L∞,

where the generator A is given by

Af(x) = 1

2

m∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x) +

m∑
i=1

bi(x)
∂f

∂xi
(x), (1.3)

and aij(x) are the entries of the matrix a(x) = σ(x)σ(x)⊤.

This result shows that the generator of the semigroup associated with an SDE is a second-order
differential operator.
An essential tool in stochastic calculus is Itô’s formula, which allows us to compute the differ-
ential of a function of a stochastic process. In the particular case of SDE, we have the following
formula for solutions of SDE:

Proposition 1.2.13 (Itô’s Formula). Let X = {Xt : 0 ⩽ t < τ} be a strong solution of the
SDE (1.1), and let f ∈ C2

c (R
m). Then, for any t ⩾ 0, we have

f(Xt∧τ ) = f(X0) +

∫ t∧τ

0
Af(Xs) ds+

l∑
k=1

∫ t∧τ

0

(
σ⊤(Xs)∇f(Xs)

)
k
dBk

s ,

where A is the generator defined in (1.3), and ∇f denotes the gradient of f .
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1.2.4 Girsanov’s Theorem

Girsanov’s theorem is a fundamental result that allows for a change of measure, effectively
transforming one SDE into another by adjusting the drift term. This has proved particularly
useful in financial mathematics and stochastic control, but not only in these fields.

Theorem 1.2.14 (Girsanov’s Theorem). [93, Thm. 8.6.4]
Let X = (Xt)t⩾0 be a strong solution of the SDE, for a given Brownian motion B and a initial
condition X0,

dXt = b(Xt) dt+ σ(Xt) dBt.

Suppose that there exist functions a : Rm → Rm and u : Rm → Rl such that:

• u is continuous.

• For all x ∈ Rm, b(x)− a(x) = σ(x)u(x).

• The process

Et = exp

(
−
∫ t

0
u(Xs)

⊤ dBs −
1

2

∫ t

0
∥u(Xs)∥2 ds

)
is a martingale satisfying E[ET ] = 1 for some T > 0 fixed.

Then, under the new probability measure Q defined by dQ
dP = ET , the process X is a strong

solution of the SDE
dXt = a(Xt) dt+ σ(Xt) dB̂t ∀0 < t ≤ T,

starting from X0 and where B̂t = Bt +
∫ t
0 u(Xs) ds is a Brownian motion under Q.

Girsanov’s theorem essentially allows us to shift the drift of an SDE by changing the underly-
ing probability measure, provided that the Radon-Nikodym derivative ET is a martingale with
expectation one. The process B̂t adjusts for the change in drift, ensuring that it remains a
Brownian motion under the new measure Q.

Our aim is to extend the notion of stochastic differential equations to manifolds, and therefore,
we now provide some fundamentals of Differential Geometry. We will recall in Section 1.3 the
bases of Differential Geometry, namely the notions of topological manifolds and atlases. Then,
smooth manifolds and submanifolds are defined, allowing to introduce tangent spaces. All these
notations serve in Section 1.4 to introduce the concepts of Riemaniann geometry that will be
needed to extend the results of SDEs to manifolds. The theory of SDEs on manifolds is strongly
based on the notion of infinitesimal generator and requires results in operator theory that are
recalled in Section 1.5. The SDEs on manifold are introduced in Section 1.5.4 in particular.

1.3 Fundamentals of differential geometry I: topological manifolds and sub-

manifolds of Rd

In this Section, we give a concise introduction to most of fundamental geometric notions used
in this document. First, we define coordinate charts and atlases of manifolds. We also discuss
on vector fields, tangent spaces, curves and maps defined on manifolds. The main references
for this Section are [78, 40], and[59].

1.3.1 Topological manifolds, coordinate charts, change of coordinates

Let M be a topological space. Recall that M is called Hausdorff if for any two distinct points
p, q ∈ M, there exist two disjoint open neighborhoods U, V of p and q, respectively.
The simplest manifolds are topological manifolds. In simple terms, a d-dimensional topological
manifold M is a topological space that locally look like open subsets of Rd.
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Definition 1.3.1 (Coordinate charts). A d-dimensional coordinate chart (or just chart) on
M is a pair (U,φ) where U is an open subset of M and φ : U → Û is a homeomorphism from
U to an open subset Û of Rd. [78, p.4]

Definition 1.3.2 (Topological manifold). [78, p.3] A topological manifold of dimension d is
a Hausdorff topological space M with a countable base such that any point of M belongs to a
d-dimensional chart on M.

Example 1.3.3. Circles and triangles (see Fig. 1.1) are then 1-dimensional manifolds because
locally, these shapes can be continuously mapped to open intervals of R.

Figure 1.1: Examples of 1-dimensional manifolds.

Remark 1.3.4 (Boundary). Manifolds given by the definitions above are called ’manifolds with-
out boundary’. Another category of manifolds are ‘manifolds with boundary’, where some points
(the boundary points) have no neighborhood comparable with Rd+ but rather locally homeomor-
phic to closed half spaces Hd := {x ∈ Rd : x1 ≥ 0}. For the sake of simplicity, we do not treat
this category of manifold here.

Definition 1.3.5 (Local coordinate system). A local coordinate system x1, x2, . . . , xd is a d-uple
of functions from an open subset U of M to R such that (U, (x1, x2, . . . , xd)) is a chart of M.

Notation 1.3.6. Within the scope of this section, the letters p and q will be used to denote
points on the manifold M, while x and y will represent the corresponding local coordinates of
these points (when the choice of local chart is clear). However, in some other sections, when
the number of mathematical objects under consideration increases considerably, the symbols p
and q will be saved for other mathematical objects, while x and y will be used to describe points
on the manifolds as well.

Normally, for convenience, given a chart (U,φ), we identify the region U with its image φ(U).
Hence in practice, when the choice of local chart is clear, we use interchangeably a point p and
its local coordinates x1(p), x2(p), . . . , xd(p) to denote a same object.

Given two charts (U, ϕ) and (V, ψ) of a d-dimensional topological manifold, then on their in-
tersection U ∩ V , one can define two different local coordinate systems, say x1, x2, . . . , xd and
y1, y2, . . . , yd corresponding respectively to ϕ and ψ. Thus, a point p ∈ U∩V can be represented
by either of two tuples of local coordinates (x1(p), x2(p), . . . , xd(p)) and (y1(p), y2(p), . . . , yd(p)).
The change of the coordinates (or transition map) from the local coordinate system (xi)
to (yi) is given then by the continuous function ψ ◦ ϕ−1.

1.3.2 Smooth structures, smooth manifolds, smooth functions

Although topological manifolds have their own appeal, many important applications of mani-
fold theory require us to move beyond topology into the realm where calculus is the primary
language.
To achieve this, it is not hard to see that a concept of ‘smoothness’ on manifolds is necessary.
In what follows, we will define a smooth manifold as a topological manifold endowed with
an additional smooth structure which can be understood as a structure that determines the
manifold smoothness.
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Definition 1.3.7 (Smooth structure). [78, p.4, p.13] A smooth atlas A on M is a collection
of charts on M, whose domains cover M, such that any two charts in A are smoothly compat-
ible, i.e., the transition map ψ ◦ φ−1 is smooth for any pair of charts (ψ,φ) with intersecting
domains.

A smooth structure A on a topological manifold M is a maximal smooth atlas on M, i.e.,
any chart that is smoothly compatible with all charts in A must also be a chart in A .

Definition 1.3.8 (Smooth manifold). [78, p.13] A smooth manifold is then a pair (M,A )
with A being a smooth structure on a topological manifold M. In other words, a smooth
manifold is a topological manifold endowed with a C∞-structure.

By a smooth chart on a smooth manifold, we will always mean a chart from its C∞ atlas. In
the sequel, since we will only deal with smooth manifolds and smooth charts, when there is no
ambiguity, the term ”chart” will be used as a synonymous term for ”smooth chart” and the
term ”manifold” will be used as a synonymous term for ”smooth manifold”.

Remark 1.3.9. Smooth structure of a manifold is not uniquely determined by its topological
structure as smoothness is not invariant under homeomorphism. Indeed, Milnor has shown in
[87] that one can construct two different smooth structures on the 7-dimensional sphere S7.

On smooth manifolds, smooth functions are defined as

Definition 1.3.10 (Smooth function, derivation). [78, p.32]

Given a smooth manifold (M,A ), a function f : M → R is said to be smooth if every local
coordinate representation of f , i.e. f ◦ φ−1 with φ ∈ A , is smooth. The space of smooth
functions on M is denoted by C∞(M).

We see that smooth functions on manifolds are mainly described locally via local charts. The
following theorem is an important property of smooth manifolds that provides a tool to globalize
local properties of manifolds by ‘gluing’ the local charts.

Theorem 1.3.11 (Partition of unity). [78, Th. 2.23] Let {Ωα}α∈A be an abitrary open cover of
a smooth manifold M. Then there exists a family {ψα}α∈A of functions of C∞(M) such that:

(i) 0 ≤ ψα ≤ 1 for all α ∈ A.

(ii) supp(ψα) ⊂ Ωα.

(iii) The family of supports {supp(ψα)}α∈A is locally finite, i.e., any point in M has a neigh-
borhood that intersects with supp(ψα) for only finitely values of A.

(iv)
∑

α∈A ψα(p) = 1 for all point p in M.

A such family of functions is called a partition of unity of M subordinate to the open cover
{Ωα}α∈A.

A particular case of the above theorem is when the open cover is chosen to be {U,M\K} where
K is a closed set contained in U . In this case, we imply the existence of a smooth function
0 ≤ ϕ ≤ 1 such that ϕ = 1 on K and ϕ = 0 outside U . Such a function ϕ is called a cutoff
function of K in U .

1.3.3 Tangent vectors, vector fields, differentials, covectors

Let M be a smooth manifold. In order to make sense of calculus on manifolds, we need to
define the tangent space at a given point on a manifold. For example, recall that in accordance
with the laws of mechanics, a curve can be obtained by specifying the velocity vector along
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the displacement. Velocity vectors are tangent vectors to the curve. When M is a lower-
dimensional subspace of Rm, each tangent space of M can be understood as the set of vectors
in Rm passing through the point under consideration on M and tangent to M. This definition
is often referred to as the geometric definition of the tangent space [78, p.51]. However, such
a definition depends on the choice of the ambient space of M. To better capture the intrinsic
nature of tangent vectors, we have the following definition, which is commonly known as the
algebraic definition of tangent vectors.

Definition 1.3.12 (Derivation, Tangent vectors, Tangent space). A linear mapping v : C∞(M) →
R is called a derivation at a point p ∈ M if it satisfies the following product rule:

v(fg) = g(p)v(f) + f(p)v(g), (1.4)

for all f, g ∈ C∞(M).
The set of all derivations at a point p is called the tangent space of M at point p, denoted by
TpM. Each element of TpM (that is, derivations at z), is also called tangent vectors of M
at p.

Remark 1.3.13 (Tangent spaces of Rm). For M = Rm and any point p ∈ Rm, the tangent
space TpRm can be identified with Rm by the identification:

Rm −→ TpR
m

v 7−→ Dv

∣∣
p
,

where Dv

∣∣
p
is the directional derivative at p with respect to vector v.

Indeed, this mapping is a linear injection between two tangent spaces with the same dimension
(c.f. Theorem 1.3.14 ).

It is easy to check that TpM is vector space over R and that even though C∞(M) is an infinite-
dimensional vector space, the space TpM is finite-dimensional.

Theorem 1.3.14. [78, Prop. 3.10] If M is a smooth manifold of dimension d, for all p ∈ M,
TpM is a vector space of the same dimension d.

The proof of Theorem 1.3.14 is essentially based on a Taylor-like expansion and the remark that
for all derivation v at p and smooth functions f, g such f(p) = g(p) = 0, we have v(gf) = 0.

Example 1.3.15 (Basis of tangent space TpM). Fix a local chart (U,φ) on M and a point
p ∈ U . For any smooth function f on M, the local representation of f under (U,φ) is just
a multivariable function on Rd(Note that φ(U) is an open subset of Rd). Therefore, the usual
partial derivative along the i-th coordinate of the local representation, i.e.,

f 7→
∂
(
f ◦ φ−1

)
∂xi

∣∣∣∣
φ(p)

,

defines a derivation of M at p. In the sequel, by abuse of notation, this derivation is denoted

by
∂

∂xi

∣∣∣∣
p

.

Proposition 1.3.16 (Basis of tangent spaces). [78, p.60] If M is a smooth manifold of di-
mension d, for any point p and any local coordinate system (xi) around p, the tangent vectors
∂

∂x1

∣∣∣∣
p

,
∂

∂x2

∣∣∣∣
p

, . . . ,
∂

∂xd

∣∣∣∣
p

form a basis of TpM.

Definition 1.3.17 (Vector field). [78, p.174] A vector field V on M is a family {Vp}p∈M of
tangent vectors of M such that associates each point p ∈ M with a tangent vector Vp ∈ TpM
at this point.
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By Proposition 1.3.16, in a local coordinates (x1, x2, . . . , xd), the vector field V can be repre-
sented in the form:

Vp =
d∑
i=1

V i(p)
∂

∂xi

∣∣∣∣
p

, (1.5)

for some real functions V 1, V 2, . . . , V n on the domain of the local coordinate system.

Definition 1.3.18 (Smooth vector field). [78, p.175] The vector field V is said to be smooth if
for any smooth local coordinate system, the corresponding functions V 1, V 2, . . . , V d are smooth.

Now, let p be a point in M and f be a smooth function on M. The mapping TpM ∋ v 7→ v(f)
defines a linear mapping on TpM. This mapping is called differential of f at p.

Definition 1.3.19 (Differential). [78, p.62] [59, p.56] Fix a point p in M and let f be a smooth
function in a neighborhood of p. The differential dfp at p is a linear function on TpM given by

⟨dfp, v⟩ = v(f) for any v ∈ TpM. (1.6)

Thus, dfp is an element of the dual space T ∗
pM of TpM, which is also called a cotangent

space. The elements of T ∗
pM are then called covectors.

Any basis {e1, e2, . . . , ed} in TpM has a dual basis {e1, e2, . . . , ed} in the dual space T ∗
pM, which

is defined by:

⟨ei, ej⟩ = δij :=

{
1, i = j,

0, otherwise.

For example, the basis
{

∂
∂xi

∣∣
p

}
1≤i≤d

has the dual {d(xi)p}1≤i≤d because

⟨d(xi)p,
∂

∂xj
∣∣
p
⟩ = ∂

∂xj
xi = δij .

Hence, the covector dfp can be represented in the basis {dxi}1≤i≤d as follows:

dfp =

d∑
i=1

∂f

∂xi

∣∣∣∣
p

dxip. (1.7)

Indeed, for any j = 1, . . . , n.

d∑
i=1

⟨ ∂f
∂xi

dxip,
∂

∂xj
⟩ =

d∑
i=1

∂f

∂xi
⟨dxip,

∂

∂xj
⟩ =

d∑
i=1

∂f

∂xi
δij =

∂f

∂xj
= ⟨df, ∂

∂xj
⟩.

Notice that in the general framework of smooth mappings between two manifolds, the differential
has a more general definition, say, as a linear mapping between tangent spaces, but we will not
explain this aspect here for the sake of simplicity.

1.3.4 Smooth map, smooth curve

So far, we have focused on real-valued functions on a manifold M, meaning functions that map
M to R. Now that smooth manifolds are well-defined, we can extend this concept to mappings
between two manifolds. For example, to define a local representation of a mapping F between
manifolds, we use local charts not only to describe the domain of F but also to describe its
codomain.
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Definition 1.3.20 (Local representation of maps between manifolds, smooth maps, diffeomor-
phism). [78, p.34] Given two manifolds M and N , and a mapping F : M → N .
A local representation of F is a function of form ψ−1 ◦ F ◦ φ, where (U,φ) and (V, ψ) are
respectively local charts of M and N such that, for the sake of well-definedness, the image F (U)
is included in V (see Figure 1.2).
The map F : M → N is said to be smooth if every local representation of F is smooth.

For smooth maps, their differentials are defined to be linear mappings between tangent spaces.

Definition 1.3.21 (Differential of smooth maps). [78, p.55] Given two manifolds M and N ,
and a mapping F : M → N . For any point p ∈ M, the differential dFp of F at point p is the
linear mapping dFp : TpM → TF (p)N such that:

⟨dFp(v), g⟩ = v(F ◦ g) ∀g ∈ C∞(M).

Remark 1.3.22. When N ≡ R, the smooth map F is indeed a real function. In this case,
notice that the tangent spaces of R can be identified with R (c.f. Remark 1.3.13), the above
definition is therefore consistent with the one given in Definition 1.3.19.

Figure 1.2: Definition of smooth maps (source: [78, Fig. 2.2]).

One of the smooth mappings we often encounter is a smooth curve.

Definition 1.3.23 (Smooth curve). A smooth curve is a smooth map of the form γ : I → M,
where I is an interval of R. In this case, the derivative of γ at t, denoted by γ′(t), is a vector
(i.e. derivation) in Tγ(t)M defined by:

〈
γ′(y), f

〉
= lim

s→t

f(γ(t))− f(γ(s)

t− s
=
∂(f ◦ γ)
∂t

∣∣
t
. (1.8)

Note that when viewed as a manifold, a closed interval like [0, 1] falls into the category of
manifolds with boundary [78, p.25]. For simplicity, the definition of such manifolds is not
covered in this document. However, specific cases, including closed intervals and half-open
intervals, will be used when studying smooth curves.

Remark 1.3.24. If M is a manifold without boundary, any given smooth curve γ : I → M
can always be extended to another smooth curve γ̃ : Ĩ → M, where Ĩ is an open interval.

1.3.5 Smooth embedding, submanifolds

While abstract manifolds are the primary focus of differential geometry, substructures like
circles and spheres within a Euclidean space Rm are visually more intuitive to perceive. These
substructures are called submanifolds of Rm. The main interest of this section is to define
this mathematical object.
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Definition 1.3.25 (Smooth immersion, smooth embedding, embedded smooth manifold). [78,
p. 78, 98] Given two manifolds M and N .
A mapping F : M → N is called a smooth immersion if dFp : TpM → TF (p)N is injective
for all p ∈ M. This map F is further called a smooth embedding if F is also a topological
embedding, i.e., F is a homeomorphism between M and F (M).
An embedded submanifold of M is a subset S of M which is a topological manifold in the
subspace topology, and endowed with a smooth structure with respect to which the inclusion map
ι : S ↪→ M is a smooth embedding.

Example 1.3.26.

(a) The unit circle S1 is an embedded submanifold R2. The torus T2 is an embedded subman-
ifold of R3.

(b) If W is an open set in Rn and H is any affine subspace of Rn that cuts through W , then
W ∩H is a smooth embedded submanifold of Rn.

Example 1.3.26(b) provides a trivial way to construct submanifolds of Eulidean spaces. Indeed,
any embedded submanifold locally has this type of relation with its ambient space, up to
diffeomorphism.

Figure 1.3: The tangent space to an embedded submanifold (source: [78, Fig. 5.12]).

Remark 1.3.27 (Tangent spaces of submanifolds are linear subspaces of the tangent spaces
of its ambient manifolds). Given an embedded submanifold S of M and the inclusion map
ι : S ↪→ M, by definition, for all p ∈ S, the differential d ιp : TpM → TpM is an injective linear
mapping. In other words, each tangent vector v in TS is associated with a unique tangent vector
space d ιp(v) in TM. Thus, from here one, we adopt the convention of identifying TpS with
its image under this map d ι, thereby thinking of TpS as a certain linear subspace of TpM (see
Figure 1.3).

Definition 1.3.28 (Vector fields tangent to submanifolds). Let S be an embedded submanifold
of M, and V be a smooth vector field on M. V is said to be tangent to S if Vp ∈ TpS for all
p ∈ S.

1.4 Fundamentals of differential geometry II: Riemannian geometry

In order to make sense of distances and volumes on a smooth manifold M, a metric on M
has to be conceptualized. Riemannian geometry studies this aspect and its implications. The
main references for this section are ”Introduction to Riemannian manifolds” by Lee [79] and
”Riemannian Geometry” by do Carmo [41]. We will next see how this metric structure allows
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to define the gradient, ∇ and divergence operators that are the bases to introduce the Laplace-
Beltrami operator and later the operators that will be the infinitesimal generators of diffusions
on manifolds.

1.4.1 Riemannian metric, gradient operator

Let M be a smooth d-dimensional manifold. A Riemannian metric (or a Riemannian metric
tensor) on M is a family g = {g(p)}p∈M such that for each p, g(p) is a symmetric, positive
definite, bilinear form on the tangent space TpM, smoothly depending on p ∈ M.
Using the metric tensor, one can define an inner product ⟨·, ·⟩g in any tangent space TpM by

⟨η, ξ⟩g ≡ g(p)(η, ξ),

for all tangent vectors η, ξ ∈ TpM. Hence, TpM becomes a Euclidean space and the length of
any tangent vector ξ is defined as

|ξ|g =
√
⟨ξ, ξ⟩g.

Given a local coordinate system x1, x2, . . . , xd, the above inner product of TpM has the form

⟨η, ξ⟩g =
d∑

i,j=1

gij(p)η
iξj ,

where (gij(p))
d
i,j=1 is a symmetric positive definite n×n matrix, and (ηi), (ξi) are coordinates of

η, ξ in the basis
{

∂
∂xi

∣∣
p

}
1≤i≤d

(see Equation (1.5) ). The condition that ”g(p) smoothly depends

on p” means that all the components gij are C∞-functions in the corresponding charts.

Definition 1.4.1. [40, p.38] A Riemannian manifold is a couple (M,g) where g is a Rieman-
nian metric on a smooth manifold M.

Let (M,g) be a Riemannian manifold. The metric tensor g provides a canonical way to identify
the tangent space TpM with the cotangent space T ∗

pM. Indeed, for any vector η ∈ TpM, denote
by ĝ(p)η a covector that is defined by the identity

⟨ĝ(p)η, ξ⟩ = ⟨η, ξ⟩g. (1.9)

It is easy to check that the mapping ĝ(p) : TpM → T ∗
pM is linear and that given a local

coordinate system x1, x2, . . . , xd, the matrix representation of ĝ(p) with respect to the basis{
∂
∂xi

∣∣
p

}
1≤i≤d

of TpM and the basis
{
dxi
}
1≤i≤d of T ∗

pM is (gij)
d
i,j=1.

Besides, if ξ ̸= 0, g(p)ξ is also non-zero because ⟨g(p)ξ, ξ⟩ = ⟨ξ, ξ⟩g > 0. Thus, g(p) is inversible
with the inverse mapping

ĝ−1(p) : T ∗
pM → TpM

whose the matrix representation in the above bases denoted by (gij)di,j=1 that satisfies:

(gij)di,j=1 =
[
(gij)

d
i,j=1

]−1
. (1.10)

For any smooth function f on M, we define its gradient ∇f(p) at a point p ∈ M by:

∇f(p) := ĝ−1(p)(dfp), (1.11)

that is, ∇f(p) is a tangent vector version of dfp. By the above remark on the matrix repre-
sentation of ĝ−1 and Equation (1.7), given a local coordinate system, the component of the
gradient ∇f can be calculated explicitly as follows:

(∇f)i :=
d∑
j=1

gij
∂f

∂xj
, (1.12)
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that is, ∇f =
∑d

i,j=1 g
ij ∂f
∂xj

∂
∂xi

. Now, if h is another smooth function on M, by using (1.12)

and the fact that (gij) is the inverse of (gij), we imply that:

⟨∇f,∇h⟩g =
d∑

i,j=1

gij
∂f

∂xi
∂h

∂xj
. (1.13)

We end this Section by showing for all smooth functions f, h, we have:

∇(fh) = h∇(f) + f∇(h). (1.14)

Indeed, for any tangent vector v, by definition,

⟨d(fg), v⟩ = v(fh) = fv(h) + hv(f) = f⟨dh, v⟩+ h⟨df, v⟩.

Thus, d(fh) = fdh + hdf . Hence, ĝ−1(p)d(fg) = ĝ−1(p) (f(p)dh+ h(p)df) . Hence, we imply
(1.14).

1.4.2 Length, distance and volume

One of the main purposes of Riemannian metric is to rigorously define curve lengths, distances
and volumes on manifolds.

Let γ : I → M be a smooth curve on the Riemannian manifold (M,g). The length of γ is
defined as, [79, p.34],

Length(γ) =

∫
I
|γ′(t)|gdt, (1.15)

where γ′(t) has been defined in (1.8). This definition of curve length allows us to construct the
distance between points on a Riemannian manifold.

Definition 1.4.2 (Geodesic distance). A smooth curve γ : I → M is a geodesic if for all t ∈ I,
∇γ′(t) = 0.
The geodesic distance between any two points p, q is the shortest length among all curves with
the same endpoints p and q:

dM(p, q) = inf{Length(γ) | γ : I = [a, b] → M, γ(a) = p, γ(b) = q}.

For geodesic curves, the acceleration ∇γ′(t) vanishes for any t ∈ I, which means that the ve-
locity |γ′(t)|g is constant and the length of the curve between any two of its points is extremal,
since it has a zero derivative.

Denote by B(M) the smallest σ-algebra containing all open subsets of M. The purpose of this
section is to show that there is a canonical volume measure µ of M defined on the measurable
space (M,B(M)), which is called the Riemannian measure (or volume) of M.

Theorem 1.4.3. [59, p.59] For any Riemannian manifold (M,g), there is a unique measure
µ on B(M) such that in any chart (U, ϕ),

dµ =
√
det g dλ, (1.16)

where g = (gij) is the matrix representation of the Riemannian metric g in the local chart U ,
and λ is the Lebesque measure of Rd.

There are various proofs for this theorem. Here, we propose one.
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A proof of Theorem 1.4.3. BecauseM is second countable and locally compact, there is a count-
able family of smooth charts {(Ui, ϕi)}i∈N that covers M and Ui is compact for each i. Let {ψi}
be a partition of unity of M subordinate to {Ui}i∈N. Let g̃i denote the representation of g in
the local chart (Ui, ϕi). We consider the following linear mapping T : Cc(M) → R

T (f) :=
∞∑
i=0

∫
ϕi(Ui)

(f ◦ ϕi)(ψi ◦ ϕi)
√

det g̃i dλ. (1.17)

Roughly speaking, T (f) is the integration of f against µ and each term on the right-hand side is
the integration of fψi on Ui. Note that (1.17) is well defined because the family of the supports
of {ψi} are locally finite, hence the compact set suppf intersects with finitely many supp(ψi).
Clearly, T is a positive linear mapping. Hence, by Riesz’s representation theorem [104, Thm
2.1] and the fact that M is a locally compact Hausdorff space, we imply that there is a measure
µ on (M,B(M)) such that

∫
fdµ = T (f).

To prove that µ is indeed the Riemannian measure we are looking for, it is clearly sufficient to
show that given any chart (U, ϕ),

µ(U) =

∫
ϕ(U)

√
dethdλ

where h is the representation of g in the local chart (U, ϕ). This is then reduced to prove that
for all i ∈ N, ∫

ϕi(U∩Ui)
(ψi ◦ ϕi)

√
det g̃i dλ =

∫
ϕ(U∩Ui)

(ψi ◦ ϕ)
√
dethdλ,

which is just a formula of change of coordinates (see Section 1.3.1, or [40, p.44]).

1.4.3 Divergence theorem, Laplace operator, Green formula

For any smooth vector field X on a Riemannian manifold (M,g), its divergence divX is a
smooth function on M, defined via the following theorem

Theorem 1.4.4 (A particular case of Theorem 16.32 [79]). For any smooth vector field X on a
Riemannian manifold (M,g), there is a unique smooth function on M, denoted by divX, such
that the following identity holds∫

M
(divX)udµ = −

∫
M
⟨X,∇u⟩gdµ, (1.18)

for all u ∈ C∞
c (M).

Before explaining the proof of this theorem, let us take a smooth chart (U, ϕ) of M, by (1.11)
and (1.9), we obtain for any function u ∈ C∞

c (U),∫
U
⟨∇u,X⟩gdµ =

∫
U
⟨g−1(du), X⟩gdµ

=

∫
U
⟨du,X⟩dµ

=

d∑
k=1

∫
U

∂u

∂xk
Xk
√
det gdλ

= −
d∑

k=1

∫
U
u
∂

∂xk
(Xk

√
det g)dλ

= −
d∑

k=1

∫
U
u

1√
detg

∂

∂xk
(Xk

√
detg)dλ
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Thus by comparing to Equation (1.18), we see that the divergence of X on (U, ϕ) can be chosen
as:

divX =

d∑
k=1

1√
detg

∂

∂xk
(Xk

√
detg). (1.19)

Clearly, the uniqueness in the above theorem implies that the formula in Equation (1.19) does
not depend the choice of ϕ in (U, ϕ).

Sketch of the proof of Theorem 1.4.4. We begin with proving the uniqueness and it is easy to
check that the uniqueness follows from the fact that if a continuous function g satisfies that∫
M gfdµ = 0 for all f ∈ C∞

c (M), g must be identical to 0.
The uniqueness then shows that the formula provided in Equation (1.19) does not depend our
choice of local chart. Hence, Equation (1.19) can be extended to define a smooth function
divX on M. Furthermore, this function divX satisfies that for any local chart (U, ϕ) and any
function u ∈ C∞

c (U), we have that:∫
M
(divX)udµ = −

∫
M
⟨X,∇u⟩dµ.

It is easy to show this property is still true if u ∈ C∞
c (M) by using a partition of unity of M

and noting that ∇(uv) = u∇v + v∇u and ∇(1) = 0.

Having defined gradient and divergence, we can now define the Laplace operator (called also
the Laplace-Beltrami operator) on any Riemannian manifold (M,g) as follows:

∆ = div ◦ ∇. (1.20)

That is, for any smooth function f on M, ∆f = div(∇f), so ∆f is a smooth function on M.
This can be formulated in terms of local coordinates.

Definition 1.4.5. [79, Prop 2.46] The Laplace–Beltrami operator on the manifold M is
the unique linear operator ∆ : C∞(M) → C∞(M) such that for any smooth function f and any
smooth local coordinates (xi) on an open set U ⊆ M:

∆f =
1√
detg

d∑
i=1

∂

∂xi

 d∑
j=1

gij
√

detg
∂f

∂xj

 , (1.21)

where detg = det(gij) is the determinant of the component matrix of g in these coordinates,
and (gij) are coefficients of the inverse matrix of (gij)1≤i,j≤d.

If M is a Euclidean space, i.e., M = Rm, its Laplacian ∆ can easily be expressed as a finite
sum of second derivatives, and Definition 1.4.5 can be seen as a generalization of Laplacian
operators in Euclidean spaces Rm to manifolds. These operators play a central role in the study
of both heat equation on manifolds and Brownian motion on manifolds, as will be seen in what
follows. In the general case, when not in Rm, the explicit expression for ∆ is more complicated.
Fortunately, with additional assumptions about the embedding of M, such a formulation can
be achieved.

Theorem 1.4.6 (Hörmander formulation for Laplacian). [67, Thm 3.1.4]
Suppose that M is a submanifold of the Euclidean space Rm with induced metric. Let {ξα}1⩽α⩽m
be the standard orthonormal basis on Rm. For each x ∈ M, let Pα(x) be the orthogonal projection
of ξα to TxM. Then, we have:

∆ =

m∑
α=1

P 2
α, (1.22)

In other words, for any smooth function f , ∆f =
∑m

α=1 Pα(Pα(f)).
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Remark 1.4.7. The number of vector fields Pi here is m, which is always greater than the
actual dimension of M.

Theorem 1.4.8. If u, v are two smooth functions on a Riemannian manifold (M,g) and one
of them has a compact support then :∫

M
u∆vdµ = −

∫
M
⟨∇u,∇v⟩gdµ =

∫
M
v∆udµ. (1.23)

Sketch of the proof of Theorem 1.4.8. If both functions have compact supports, the above the-
orem follows directly from the divergence theorem (Theorem 1.4.4). When either one of them
does not have a compact support, we can use a cutoff function based on the support of the
other function to revert the problem to the previous situation.

From this point to the rest of this section, we assume that readers are familiar with most of
the standard notions in theory of smooth manifolds, even with the notions we did not mention,
say, smooth mappings, tangent space TM, flow .

1.4.4 Normal coordinates

Given a Riemannian manifold (M,g), a normal coordinate chart of M is a kind of local charts
of M that is specifically made to bear many convenient geometric properties. For its definition,
existence and uniqueness, we refer the interested readers to [79, p 131-132]. In this section, we
will only recap the properties in which we are interested.

Theorem 1.4.9. [Derivatives of Riemannian metrics in normal coordinate charts][79, Prop.
5.24] Let Φ : M ⊃ U → Rd be a normal coordinate chart at a point x in M such that Φ(x) =
0 and (gij ; 1 ≤ i, j ≤ d) be the local representation of the Riemannian metric of M in the
coordinate chart Φ. We have that for all i, j,

gij(0) = δij , g′ij(0) = 0. (1.24)

To illustrate the benefits of using normal coordinates in computations, we consider the problem
of calculating the Laplacian and the gradient at a point x of smooth functions f, h : M → R.

Proposition 1.4.10. Suppose that Φ : M ⊃ U → Rd be a normal coordinate chart at a point
x in M such that Φ(x) = 0, then:

i. ∆f(p) = ∆f̂(0),

ii. ⟨∇f(p),∇h(p)⟩ = ⟨∇f̂(0),∇ĥ(0)⟩,

where f̂ , ĥ are the local representation of f and h in the local chart Φ.

Notice that in Equality i. of Proposition 1.4.10, the symbol ∆ on the left hand side stands for
the Laplace-Beltrami operator while the symbol ∆ on the right hand side stands for the usual
Laplacian in Rd. The same remark applies for Equality ii..

Proof for Proposition 1.4.10. Let (gij) be the local representation of the Riemannian metric g
in the local coordinate chart Φ. By Theorem 1.4.9, we know that gij(0) = δij , thus, g

ij =
δij . (Recall that (gij) is defined as the inverse matrix of (gij)). Hence, by comparing with
Equation 1.13, we have Equality ii..
For Equality i., we will use Equation (1.21) at x = 0. By noticing that det g(0) = 1 and
that every term involving derivatives of gij and g

ij in the above formula vanishes, we have the
conclusion.
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1.4.5 Tensor, differential forms, exterior derivative

We can upgrade the notions of tangent spaces and gradient to higher dimensions. Hessian oper-
ators, volume measures and integration theory are extended by tensors and differential k-forms.
This section can be skipped in a first reading. One of its main result is that the Laplace Bel-
trami operator can be expressed in terms of these objects.

The tensor bundle and exterior derivative on manifolds are additional concepts in differ-
ential geometry, built on top of the notion of the tangent space. These concepts are inspired
by their counterparts in tensor algebra and introduce an additional (algebraic) structure to the
existing differential objects.

Definition 1.4.11 ((k, l)-Tensor Bundle). [78, chapter 12]
Let V be a finite-dimensional vector space. The space of (k, l)-tensors on V is defined as:

1. T (k,l)V = T k(V ) ⊗ T l(V ∗), where T k(V ) denotes the k-fold tensor product of V , and
T l(V ∗) denotes the l-fold tensor product of the dual space V ∗.

For a smooth manifold M, we construct the corresponding tensor bundles as follows:

2. The bundle of covariant k-tensors on M is given by:

T k(T ∗M) :=
∐
x∈M

T k(T ∗
xM),

where T ∗
xM is the cotangent space at x ∈ M, and

∐
denotes the disjoint union over all

points in M. This bundle collects all covariant k-tensors at each point of the manifold.

3. The (k, l)-tensor bundle over M is defined as:

T (k,l)TM :=
∐
x∈M

T (k,l)(TxM),

where T (k,l)(TxM) is the space of (k, l)-tensors at the point x ∈ M, constructed from the
tangent space TxM and its dual T ∗

xM.

In this definition, the (k, l)-tensor bundle encompasses all possible tensors that are contravariant
of order k and covariant of order l at each point of the manifold M.

Definition 1.4.12. [78, p.360] The space of all smooth differential k-forms on M is
denoted by Ωk(M) and is defined as:

Ωk(M) = Γ
(
ΛkT ∗M

)
.

Here, Γ denotes the space of smooth sections of a vector bundle, and ΛkT ∗M represents the
k-th exterior power of the cotangent bundle T ∗M.
Then, we define

Ω∗(M) =

k⊕
i=0

Ωk(M),

Remark 1.4.13. The wedge product on Ωk for each k turns Ω∗(M) into an associative, anti-
commutative graded algebra.

Differential forms are antisymmetric tensor fields that play a crucial role in calculus on mani-
folds. They generalize the concepts of functions and vector fields and are fundamental in the
formulation of integration on manifolds, Stokes’ theorem, and de Rham cohomology.
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Lemma 1.4.14 (Characterization of Differential Forms). [78, p. 318]
A map

A : C∞(M)× · · · × C∞(M)︸ ︷︷ ︸
k copies

→ C∞(M)

is induced by a smooth covariant k-tensor if and only if it is multilinear over C∞(M).
Moreover, if A is alternating (i.e., it changes sign upon swapping any two of its arguments),
then it is induced by a differential k-form.

This lemma provides a characterization of tensor fields and differential forms in terms of their
action on smooth vector fields.

Definition 1.4.15 (Pullback of Differential Forms). [78, p.284]
Given a smooth map F : M → N between smooth manifolds, the pullback F ∗ : Ω(N ) → Ω(M)
is defined by:

F ∗(ω)(X1, . . . , Xk) = ω (F∗X1, . . . , F∗Xk) ,

for all k ∈ N, ω ∈ Ωk(N ), and X1, . . . , Xk ∈ C∞(M).
Here, F∗ : TxM → TF (x)N is the differential (pushforward) of F at x ∈ M. The pullback
F ∗ allows us to transfer differential forms from N back to M via the map F , enabling the
comparison and manipulation of forms on different manifolds.

The pullback operation is fundamental in differential geometry, as it preserves the differential
structure when mapping forms between manifolds. It ensures that the integral of a form over a
manifold corresponds to the integral of its pullback over the preimage under F , aligning with
the change of variables in integration.

Definition 1.4.16 (Exterior Derivative). [78, Thm 14.24]
There exists a unique graded map d : Ω∗(M) → Ω∗(M), called the exterior derivative on M,
satisfying the following properties:

1. Linearity: d is linear over R.

2. Action on Functions: For all f ∈ C∞(M) = Ω0(M) and X ∈ X(M), the exterior
derivative acts as:

df(X) = Xf,

where Xf denotes the derivative of f in the direction of X.

3. Nilpotency: The exterior derivative satisfies d ◦ d = 0, meaning that applying it twice
yields zero.

4. Leibniz Rule (Graded Product Rule): For all ω ∈ Ωk(M) and η ∈ Ωl(M),

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη.

The exterior derivative generalizes the concept of differentiation to higher-degree differential
forms. It is a crucial operator in differential geometry and topology, playing a central role in
de Rham cohomology, Stokes’ theorem, and the theory of differential equations on manifolds.
The property d ◦ d = 0 leads to the concept of closed and exact forms, which are essential in
the study of the topology of manifolds.

Notation 1.4.17. (Notation conflict) When d has multiple meanings, such as representing a
differential in a differential equation, we use d instead of d to denote the exterior derivative.

The following lemma highlights the naturality of the exterior derivative with respect to smooth
maps between manifolds. The pullback operation preserves the algebraic and differential struc-
tures of forms, making it a homomorphism of differential graded algebras.
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Lemma 1.4.18 (Naturality of the Exterior Derivative). [78, p. 366]

Given a smooth map F : M → N between smooth manifolds, the following properties hold:

1. Linearity of Pullback: The pullback F ∗ : Ω∗(N ) → Ω∗(M) is linear over R.

2. Compatibility with Wedge Product: For all ω, η ∈ Ω∗(N ),

F ∗(ω ∧ η) = F ∗(ω) ∧ F ∗(η).

3. Commutation with Exterior Derivative: The pullback commutes with the exterior
derivative, i.e.,

F ∗(dω) = dF ∗(ω),

for all ω ∈ Ω∗(N ).

Proposition 1.4.19. The Laplace–Beltrami operator on the manifold M defined in (1.21) can
be rewritten using the exterior derivative and its pullback:

∆u = d⊗ d∗.

1.4.6 Linear connection and covariant derivatives

When exploring classical results or developing new ones on manifolds, we often begin by trans-
lating fundamental concepts from well-understood spaces such as the Euclidean space Rd into
their corresponding, more general versions on curved spaces like manifolds. The primary fo-
cus of this section is to introduce one such translation. In particular, we will examine how to
define higher-order derivatives of functions on manifolds. To achieve this, we first introduce
the concept of a linear connection. Essentially, a linear connection is a rule that enables us
to differentiate vector fields along curves on a manifold; this operation is also known as the
covariant derivative. Once the covariant derivative is well-defined for vector fields, it can be
naturally and uniquely extended to more advanced objects, such as tensor fields.

This section is organized into three main parts. In the first part (Section 1.4.6.1), we revisit
the standard concept of covariant derivatives for multivariable functions in Rd. Next, in Section
1.4.6.2, we define the linear connection and covariant derivatives of functions on manifolds.
Finally, as an illustrative example, we present a coordinate-free Taylor expansion formula for
functions on manifolds in Section 1.4.6.3.

The main references for this section are chapter 5 and chapter 6 in [79].

1.4.6.1 Covariant derivatives in Rd

Given a multivariable function p : Rd → R, the kth-order covariant derivative of p at a point
x, denoted by ∇kp(x) (and occasionally by p(k)(x) or ∇kp

∣∣
x
in this thesis), is defined as the

multilinear map

∇kp(x) : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R,

given by

∇kp(x)(v1, . . . , vk) =
∑

(α1,...,αk)∈{1,...,d}k
vα1
1 · · · vαk

k

∂kp

∂xα1 · · · ∂xαk
(x).

Although this definition may appear cumbersome, it is merely a generalization of the standard
derivative. For example, when k = 1, ∇1p(x) coincides with the gradient ∇p(x) since, for every
vector v ∈ Rd,

⟨∇p(x), v⟩Rd = ∇1p(x)(v).
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Similarly, when k = 2, ∇2p(x) is exactly the Hessian matrix Hp(x) of p, in the sense that for
all v1, v2 ∈ Rd,

⟨v1,Hp(x) v2⟩Rd = ∇2p(x)(v1, v2).

Using this objects, the Taylor expansion of p(x) about 0 up to order k can be expressed as
follows:

p(x) =

k∑
i=0

1

i!
∇ip(0)(x×k) +

1

k!

∫ 1

0
(1− s)k∇k+1p(sx)(x×(k+1))ds.

where x×i denotes the element (x, ..., x)︸ ︷︷ ︸
i times

in (Rd)i. Note that, this formulation of Taylor expansion

is of minimal usefulness in multivariable calculus in practice. It only serves as an illustrative
example for our use case.

1.4.6.2 Linear connection and covariant derivatives of functions on manifolds

One significant advantage of Rd over a general manifold in performing derivative computations
is that all tangent spaces can be naturally identified with a single vector space. For example,
given a tangent vector v ∈ TxRd, for any other point y different form x in Rd the tangent space
TyRd is canonically identified with Rd, so that the corresponding tangent vector can also be
regarded as v. This clear correspondence does not hold on a general manifold. In fact, on a
general manifold there exist multiple ways to establish such identifications via different linear
connections. The process of establishing these identifications is known as parallel transport,
which depends entirely on the chosen linear connection and the paths connecting the points.
We will not discuss parallel transport here, and will focus solely on the concept of a linear
connection.

Definition 1.4.20 (Linear connection). [79, p.91] A linear connection on M is a map

∇ : X(M)× X(M) −→ X(M),

written (X,Y ) 7→ ∇XY , satisfying the following properties:

(i) ∇XY is linear over C∞(M) in X. In other words, for all f1, f2 ∈ C∞(M) and X1, X2 ∈
X(M),

∇ f1X1+f2X2 Y = f1∇X1Y + f2∇X2Y.

(ii) ∇XY is linear over R in Y . That is, for all a1, a2 ∈ R and Y1, Y2 ∈ X(M),

∇X

(
a1 Y1 + a2 Y2

)
= a1∇XY1 + a2∇XY2.

(iii) ∇X(f Y ) = f ∇XY +
(
Xf
)
Y for all f ∈ C∞(M),

where M denotes the space of all smooth vector fields on M.

Informally, for any point x ∈ M, ∇XY
∣∣
x
is the ”derivative” the vector field Y at x in the

direction X(x). Indeed, the ”locality” of the directional derivative is still reserved for linear
connection. That is,

Proposition 1.4.21 (Locality of linear connection). ([79, Proposition 4.5])∇XY
∣∣
x
depends

only on the values of Y in a neighborhood of x and on the value of X at x.

In the context of Riemannian geometry, though we will not go into the full details here, every
Riemannian metric on a manifold defines a unique linear connection known as the Levi-Civita
connection(cf. [79, Thm 5.10]). Consequently, unless otherwise specified, any mention of a linear
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connection or related concepts on a Riemannian manifold should be understood as referring to
this canonical Levi-Civita connection.
We now discuss the extensibility of linear connection. Note that no Riemannian structure is
assumed in the subsequent discussion.
Covariant derivatives of tensor fields
Every linear connection on a manifold defines a unique procedure for differentiating smooth
tensor fields.

Proposition 1.4.22. ([79, Prop. 4.15]). Let M be a smooth manifold with or without bound-
ary, and let ∇ be a connection in TM. Then ∇ extends uniquely to each tensor bundle
T (k,l)(M), also denoted by ∇, so that the following conditions are satisfied:

(i) In T (1,0)(M) = TM, ∇ agrees with the given connection.

(ii) In T (0,0)(M) = M× R, ∇ is given by ordinary differentiation of functions:

∇Xf = Xf.

(iii) For any tensor fields F,G of appropriate types,

∇X

(
F ⊗G

)
=
(
∇XF

)
⊗ G + F ⊗

(
∇XG

)
.

(iv) ∇ commutes with all contractions: if “tr” denotes a trace on any pair of indices, one
covariant and one contravariant, then

∇X

(
tr r
)

= tr
(
∇Xr

)
.

We are now ready to discuss covariant derivatives of a smooth function.
First order derivative, problem of notations
For a smooth function p : M → R, as discussed in previous sections, ∇p is defined as the
mapping:

X ∈ X(M) 7→ X(p).

In other words, ∇p is simply the 1-form dp.
Note that the gradient operator ∇ does not exist on a general manifold; it arises only in the
presence of a Riemannian metric, which provides a canonical correspondence between 1-forms
and tangent vectors.
Furthermore, as one should have observed by now, the notation ∇ is used in various contexts
within differential geometry. Its precise meaning should be inferred from the surrounding geo-
metric framework.
Second derivative and symmetry
The second order covariant derivative ∇2p of p, which is also called covariant Hessian, is then
defined by as:

∇2p(Y,X) = X(Y p)− (∇XY )p, (1.25)

where X and Y are smooth vector fields on M. In general, there is no symmetry in X and Y
for a general covariant Hessian. Nonetheless, within the framework of Riemannian metric, this
symmetric is valid.
Higher order covariant derivatives
For any k ≥ 1, the k-th covariant derivative ∇kp of p is then the C∞(M) multi-linear mapping

∇kp : X(M)× · · · × X(M)︸ ︷︷ ︸
k times

→ C∞(M)

defined by the recursive relation:
∇kp := ∇(∇k−1p). (1.26)

Note that these objects do have local representations using Christoffel symbols. However, they
are not in the scope of this introduction.
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1.4.6.3 A Taylor expansion formula for functions on manifolds

In this section, to illustrate a concrete application of the above constructions, we present a
formulation for the Taylor expansion of smooth functions on manifolds. A key advantage of this
approach is that it is coordinate-free, meaning it does not depend on any local charts.

Definition 1.4.23. ([79, p.103]) A smooth curve γ on a smooth manifold M is called geodesic
with respect to a linear connection ∇ if:

∇γ̇ γ̇ = 0.

Theorem 1.4.24. Given a manifold M with a linear connection ∇ : M×M → M. For any
smooth function p on M, two points x and y on M, a smooth geodesic curve γ : [0, 1] → M
connecting x and y, that is γ(0) = x and γ(1) = y. For any positive integer k, we have that:

p(y)− p(x) =
k∑
i=1

1

i!
∇ip

∣∣
x
(γ̇(0), γ̇(0), ..., γ̇(0)︸ ︷︷ ︸

i times

) +
1

k!

∫ 1

0
(1− s)k∇k+1p

∣∣
γ(s)

(γ̇(s), γ̇(s), ..., γ̇(s)︸ ︷︷ ︸
k+1 times

)ds.

Proof. Consider F (t) = p(γ(t)). It is sufficient to show that for any k and s ∈ (0, 1)

F (k)(s) = ∇kp
∣∣
γ(s)

(γ̇(s), γ̇(s), ..., γ̇(s)︸ ︷︷ ︸
k times

).

Clearly, this is true for k = 0. Suppose this is true for l, we will prove that it is true for k := l+1.
Indeed, firstly, we have:

dF (l)

ds
= ∇γ̇

∇lp
∣∣
γ
(γ̇, γ̇, ..., γ̇︸ ︷︷ ︸

l times

)

.
Then, after Eq 4.12 in [79, p. 96] and the fact that ∇γ̇ γ̇ = 0, we see that:

∇γ̇

∇lp
∣∣
γ
(γ̇, γ̇, ..., γ̇︸ ︷︷ ︸

l times

)

 =
(
∇γ̇∇lp

)
(γ̇, γ̇, ..., γ̇︸ ︷︷ ︸

l times

).

Finally, after Eq 4.14 [79, p. 97], we have:(
∇γ̇∇lp

)
(γ̇, γ̇, ..., γ̇︸ ︷︷ ︸

l times

) = ∇l+1p(γ̇, γ̇, ..., γ̇︸ ︷︷ ︸
l+1 times

).

Therefore, we have the desired conclusion.

1.4.7 Frame bundle and horizontal lift

It is not always easy and beneficial to analyze a Riemannian manifold through its ambient space.
In this section, we will analyze the lifting of our initial manifold M to a more abstract manifold
called the frame bundle. This lift is the central concept of the Eells-Elworthy-Malliavin
construction of Brownian motion and remains the standard approach to study Brownian motion
and its variants on manifolds.
Our primary reference for this section is Chapter 2 of [67]. Our modest contribution lies in
refining the regularity aspects of various statements. We also suppose in this subsection that
readers are fairly familiar with Riemannian geometry.

Definition 1.4.25. A frame at x ∈ M is an R-vector space isomorphism u : Rd → TxM
between Rd and TxM.
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In other words, suppose that {ei}1⩽i⩽d is the standard orthonormal basis on Rd, then ue1, ue2, ..., ued
make up a basis (equivalently, a frame) for TxM.

Definition 1.4.26 (Frame bundle). We use F(M)x to denote the space of all frames at x.
Then the frame bundle of M is the disjoint union:

F(M) :=
∐
x∈M

F(M)x.

Hence, the projection p : F(M) → M is a bundle over M. This bundle M naturally makes
into a smooth bundle of dimension d+ d2.

Suppose M is equipped with a connection ∇ : Γ(TM)× Γ(TM) → Γ(TM).

Definition 1.4.27 (Horizontal curve). Let I be an open interval in R. A horizontal curve
(ut)t∈I in M is a C1- choice of frames in F(M) such that for every vector v ∈ Rd, (utv) is
parallel along (put):.

On the one hand, a horizontal curve in FM clearly defines a unique C1-curve in M. The vice
versa is also true, that is,

Proposition 1.4.28. Given a C1-curve (γt) in M and a frame u ∈ F(M)x at x ∈ M, there
is a unique horizontal curve (ut) along (γt) such that u0 = u. Moreover, γ ∈ Ck if and only if
u ∈ Ck.

Then a tangent vector of the framebundle F(M) is defined to be horizontal as follows:

Definition 1.4.29 (Horizontal vector). For u ∈ F(M), a tangent vector X ∈ TuF(M) is said
to be horizontal if it is tangent to a horizontal curve.

In other words, X is horizontal if there is a horizontal curve (ut) such that u0 = u and for all
F ∈ C1(F(M)),

d

dt
F (ut) = XF.

Having defined the concept ’horizontal’, we can now introduce the main concept of this section:
the horizontal lift.

Definition 1.4.30 (Horizontal lift of a tangent vector of M). Given a tangent vector z ∈ TxM,
for x ∈ M, the horizontal lift Hz of z at u ∈ F(M)x is the tangent vector at x of any horizontal
curve (ut) in F(M) such that u0 = u and ẋ(0) = z ∈ Tx(0)M where x(t) := put.

We use HuF(M) and HF(M) to denote respectively the space of all horizontal vector at u, and
the horizontal bundle of F(M). Indeeds, HF(M) → F(M) is a vector bundle of rank d [67,
p.38].

Definition 1.4.31. For any vector v ∈ Rd, the horizontal lift Hv of v is the vector field u 7→
Huz ∈ TuF(M).

Hence, for any vector field Z ∈ Γ(TM), HZ can be rewritten as u 7→ Hu−1Z(u). Therefore, HZ

is Ck if and only if HZ ∈ Ck.
We use Hi to denote Hei for each i.

Remark 1.4.32. Hv(f ◦ p) = (vf) ◦ p for all f ∈ C1(M), v ∈ TM.
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1.5 Fundamentals of Operator theory

In this section, we lay out foundational concepts in operator theory, particularly focusing on un-
bounded operators in Hilbert spaces. We have explored the definitions and properties of densely
defined, closed, symmetric, and self-adjoint operators, which are essential in understanding the
behavior of differential operators like the Laplacian. Additionally, we have introduced weighted
Riemannian manifolds and the weighted Laplacian, providing insights into how weight functions
influence spectral properties and the analysis on manifolds. These concepts will serve as build-
ing blocks for further exploration of functional analysis and its applications in mathematical
physics and differential geometry.
In this section, we introduce essential concepts related to unbounded operators on Hilbert spaces,
which are particularly important when dealing with differential operators like the Laplacian.
Let H be a separable Hilbert space, with inner product denoted by ⟨·, ·⟩. Let A : D → H be
an unbounded linear operator on H, where D ⊂ H is the domain of A. The operator A maps
elements from its domain D back into H.
We begin by defining several fundamental properties of unbounded operators, which will be
crucial in our subsequent discussions.

Definition 1.5.1 (Densely defined operators, Closed operators, Symmetric operators, Positive
pperators). [105, p.347-348]
We say:

• A is densely defined if its domain D is dense in H; that is, for every u ∈ H, there
exists a sequence (un) ⊂ D such that un → u in H.

• A is symmetric if
⟨Au, v⟩ = ⟨u,Av⟩ for all u, v ∈ D,

This means that A equals its adjoint on D.

• A is positive if
⟨Au, u⟩ ⩾ 0 for all u ∈ D.

This property ensures that the operator does not decrease the ”energy” associated with u.

• A is closed if its graph is a closed subset of H ×H. Specifically,

Graph(A) := {(u,Au) ∈ H ×H : u ∈ D}

is closed in the Hilbert space H ×H equipped with the product topology.

Understanding these properties is essential because they determine the behavior of the operator
and its suitability for analysis in various contexts.

Remark 1.5.2. An alternative and often practical characterization of a closed operator A is the
following: A is closed if and only if, for every pair (u, v) ∈ H ×H and any sequence (un) ⊂ D
satisfying

un
H−→ u and Aun

H−→ v,

we have u ∈ D and Au = v. This means that if both un and Aun converge in H, then the limit
point u belongs to the domain D, and the operator A acts continuously at u.

Remark 1.5.3. It is important to note that the domain D of A does not need to be closed
in H, and not every unbounded operator is closed. Some operators can be extended to closed
operators, known as their closures, while others cannot.

In certain cases, we can extend an unbounded operator to a closed operator, which is essential
for defining self-adjoint operators and studying their spectral properties.
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Proposition 1.5.4 (Closure of a symmetric operator). If A is a densely defined symmetric
operator on H, then there exists a unique extension A : D → H of A such that the graph of A
is the closure of the graph of A in H ×H.
Moreover, we have:

1. A is symmetric.

2. The domain D of A is the completion of D with respect to the graph norm:

∥u∥A := ∥u∥H + ∥Au∥H .

Additionally, if A is positive, then so is A.

Proof. It is sufficient to show that the closure of Graph(A) in H ×H is indeed a graph of an
unbounded operator.
Suppose the otherwise, i.e., there is a sequence (fn) ⊂ D and a non-null element u ∈ H such
that with respect to the norm in H,

lim
n→∞

fn = 0, lim
n→∞

Afn = u

Thus, for every element g ∈ D, by symmetry of A, we have:

⟨u, g⟩ = lim
n→∞

⟨Afn, g⟩ = lim
n→∞

⟨fn,Ag⟩ = 0

Besides, D is dense in H. Hence, u must be 0, which is a contradiction. Hence, the conclusion.

Notation 1.5.5 (Closure). In the rest of this text, the operator A defined in Proposition 1.5.4
is called the closure of A.

Remark 1.5.6. The second point in Proposition 1.5.4 also implies that u ∈ D if and only if
there exists a sequence (un) ⊂ D such that un → u in H and (Aun) is a Cauchy sequence in H.
This characterization is particularly useful when dealing with unbounded operators, as it allows
us to understand their domains through limits of sequences in D.

Next, we introduce the concept of the adjoint of an unbounded operator, which generalizes the
notion of the transpose of a matrix to infinite-dimensional spaces.

Definition 1.5.7 (Adjoint of an unbounded operator). [105, p.348] Suppose that A is densely
defined. The adjoint A∗ : D∗ → H of A is an unbounded operator defined by:

• The domain D∗ consists of all g ∈ H such that the linear functional

D ∋ f 7→ ⟨Af, g⟩

is bounded on D with respect to the norm of H.

• For each g ∈ D∗, there exists a unique element A∗g ∈ H such that

⟨A∗g, f⟩ = ⟨g,Af⟩ for all f ∈ D.

Remark 1.5.8. Informally, the adjoint A∗ is the maximal extension of A that satisfies the
relation

⟨Af, g⟩ = ⟨f,A∗g⟩ for all f ∈ D, g ∈ D∗.

It captures how A interacts with the inner product structure of H.
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Several important properties relate an operator to its adjoint.

Proposition 1.5.9. [105, Thm 13.9, Thm 13.11] Suppose that A is densely defined. Then:

• If A is symmetric, then A∗ extends A.

• The graph of A∗ is closed, so A∗ is a closed operator.

• If A is symmetric, then the double adjoint A∗∗ equals the closure of A, that is, A∗∗ = A.

These results highlight the significance of the adjoint operator in understanding the closure and
extensions of A.

Definition 1.5.10 (Self-adjoint and Essentially self-adjoint operators). Suppose A is densely
defined. We say:

• A is self-adjoint if A∗ = A; that is, A coincides with its adjoint.

• A is essentially self-adjoint if A is symmetric and its closure A is self-adjoint; equiv-
alently, A∗ = A.

Self-adjoint operators are crucial in quantum mechanics and spectral theory because they guar-
antee real eigenvalues and a complete set of eigenfunctions, which are necessary for the physical
interpretation of observables.

Proposition 1.5.11. If A is densely defined and symmetric, then A is self-adjoint if and only
if its adjoint A∗ is symmetric.

Proof. If A is self-adjoint, then A∗ = A is symmetric by definition. Conversely, if A∗ is symmet-
ric, since A∗ extends A and both are symmetric, it follows that A∗ = A, so A is self-adjoint.

To illustrate these concepts, let us consider an example involving the Laplacian operator.

Example 1.5.12 (The Laplacian on L2((0, 1))). Consider the Laplacian A = − d2

dx2
defined on

the dense subspace D := C∞
c (0, 1) of the Hilbert space H = L2((0, 1)). Here, C∞

c (0, 1) denotes
the set of infinitely differentiable functions with compact support in (0, 1).

The closure A of A is defined on the Sobolev space H2
0 ((0, 1)), which is the completion of C∞

0 (0, 1)
under the Sobolev norm

∥f∥H2
0 (0,1)

:= ∥f∥L2(0,1) + ∥Af∥L2(0,1).

This space consists of functions in L2((0, 1)) whose weak derivatives up to second order are in
L2((0, 1)) and vanish at the boundary.

Although A is symmetric and positive on D, its adjoint A∗ is not symmetric and not necessarily
positive. For instance, consider the function f(x) = ekx with k ∈ C. This function may not
belong to D but can belong to D∗. We find that

A∗f = −k2ekx = −k2f,

where −k is not necessarily real or positive, depending on k. This example demonstrates that
an operator’s adjoint can have different properties from the original operator, emphasizing the
importance of understanding the domains and closures of operators.
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1.5.1 Weighted Riemannian Manifolds and Weighted Laplacians

In differential geometry and analysis, the concept of a weighted manifold extends the classical
notion of a Riemannian manifold by incorporating a measure with a smooth density function.
This framework is useful in various applications, including probability theory, geometric analy-
sis, and the study of heat kernels. We can refer the interested readers to [59].
Let (M,g) be a Riemannian manifold, where g is the Riemannian metric. Let µ be a measure
on M.

Definition 1.5.13 (Weighted Riemannian manifold). The triple (M,g, µ) is called a weighted
Riemannian manifold if µ is a measure on M with a smooth positive density p with respect
to the Riemannian volume measure volM; that is,

µ = p dvolM.

For any smooth vector field X on M, the weighted divergence divµ(X) is defined by

divµ(X) :=
1

p
div(pX),

where div denotes the usual divergence operator associated with the metric g.

The weighted divergence adjusts the classical divergence to account for the measure µ, incor-
porating the effect of the density function p.

Definition 1.5.14 (Weighted Laplacian). For any smooth function f on M, the weighted
Laplacian ∆µf is defined as

∆µf := divµ(∇f),
where ∇f is the gradient of f with respect to the metric g, see Section 1.4.1.

The weighted Laplacian generalizes the standard Laplace-Beltrami operator by including the
weight function p, making it essential in studying diffusion processes and heat flow on weighted
manifolds. As an example, for two positive functions p, q ∈ C2, the operators Apq given for any
test function f of class C2 on M by

Apq(f) := q∆f + ⟨q∇ ln(pq),∇f⟩, (1.27)

are weighted Laplacians associated with the weighted Riemannian metric g̃ = q g and with the
measure dµ = p dvolM. When we take q = p

2 , we recover the generator

p

2
∆f + ⟨∇p,∇f⟩

studied in [25, 55, 61]. When q = 1, we recover a Langevin diffusion studied in [121] and whose
generator L is defined for any test function f of class C2 on M by

L(f) :=∆f + ⟨∇ ln p,∇f⟩ = ∆f +

〈
∇p
p
,∇f

〉
. (1.28)

Remark 1.5.15. By applying Green’s identity (a generalization of integration by parts), we
find that ∆µ is a symmetric operator on L2(µ). Specifically, for any f, g ∈ C∞(M), we have∫

M
(∆µf) g dµ =

∫
M

divµ(∇f) g dµ

= −
∫
M
⟨∇f,∇g⟩g dµ

=

∫
M
f (∆µg) dµ.

Here, ⟨·, ·⟩g denotes the inner product induced by the Riemannian metric g. This symmetry is
crucial for spectral analysis and ensures that the operator has real eigenvalues.
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The spectral properties of the weighted Laplacian are of significant interest. Under appropriate
conditions, its spectrum consists of a discrete set of eigenvalues that can be compared to those
of the standard Laplacian.
Let

0 = λµ0 < λµ1 ⩽ λµ2 ⩽ · · ·

denote the eigenvalues of −∆µ (counted with multiplicity). Similarly, let

0 = λ0 < λ1 ⩽ λ2 ⩽ · · ·

denote the eigenvalues of the usual Laplacian −∆M.
To study the behavior of λµk , we recall the following variational characterization known as the
minimax principle.

Theorem 1.5.16 (Minimax Principle). [59, Theorem 10.18] The eigenvalues of −∆µ satisfy

λµk = sup
dimE=k−1

inf
f∈E⊥\{0}

Rµ(f),

where:

• The supremum is taken over all (k−1)-dimensional subspaces E of W 1(M, µ), the Sobolev
space of functions with square-integrable first derivatives.

• E⊥ denotes the orthogonal complement of E in L2(µ).

• The Rayleigh quotient Rµ(f) is defined by

Rµ(f) :=

∫
M |∇f |2 dµ∫
M f2 dµ

.

Using this principle, we can compare the eigenvalues of the weighted and unweighted Laplacians.

Lemma 1.5.17. There exists a constant C > 0 such that for all k ⩾ 1,

C−1λk ⩽ λµk ⩽ Cλk.

In other words, λµk and λk are comparable up to a constant factor that depends on the weight
function p but not on k.

Proof. Let R(f) denote the Rayleigh quotient with respect to the unweighted measure:

R(f) =

∫
M |∇f |2 dvolg∫
M f2 dvolg

.

Since p is smooth and positive on M, there exist constants pmin, pmax > 0 such that

0 < pmin ⩽ p(x) ⩽ pmax for all x ∈ M.

Therefore, for any f ∈W 1(M, µ),

pmin

∫
M

|∇f |2 dvolg ⩽
∫
M

|∇f |2 dµ ⩽ pmax

∫
M

|∇f |2 dvolg,

and similarly for the denominator involving f2.
Using the minimax principle and these inequalities, we can relate the eigenvalues λµk and λk
through the constants pmin and pmax, yielding the desired comparison.
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By applying Weyl’s asymptotic formula, which describes the behavior of eigenvalues of elliptic
operators on compact manifolds, we obtain the following corollary.

Corollary 1.5.18. For a fixed measure µ, there exists a constant κ > 1 such that

κ−1k2/d ⩽ λµk ⩽ κk2/d,

where d is the dimension of the manifold M.

Remark 1.5.19. An alternative approach to obtaining this result is to use spectral theory for
elliptic operators. Specifically, as ∆µ is an essentially self-adjoint elliptic differential operator
on the weighted manifold (M,g, µ), one can apply results from spectral theory, such as those
found in [107, Problem 15.4, p. 131], to derive the asymptotic behavior of its eigenvalues.

These results demonstrate that the introduction of a smooth positive weight function does not
drastically alter the spectral properties of the Laplacian. The eigenvalues remain comparable
to those of the standard Laplacian, preserving the essential analytical and geometrical features
of the manifold.

1.5.2 Semigroup theory

In this section, we will explore some basic concepts of semigroup theory, thereby laying the
groundwork for further analysis of SDEs through an approach from an analytical perspective.
Our main reference for this section is the book [72] by Engel and Nagel.

Let (B, ∥ · ∥) be a Banach space. Keep it mind that in most of our cases, B is Lp-spaces with
1 ≤ p ≤ ∞.

Definition 1.5.20. [72, p.14,p.36,p.40] A family (Pt)t≥0 of bounded linear operators on B is
called a semigroup on B if {

PsPt = Ps+t for all s, t ≥ 0,

P0 = Id.

Then, this semigroup (Pt)t≥0 is said to be

• strongly continuous if t 7→ Ptf is continuous for all f ∈ B.

• contractive if ∥Pt∥ ≤ 1 for all t.

Given a strongly continuous contraction semigroup (Pt), its generator is defined as:

Definition 1.5.21. The generator of a semigroup (Pt)t≥0 is defined as the unbounded operator
A : D(A) → B such that D(A) = {f ∈ B : limt→0+

Ttf−f
t exists} and

Af = lim
t→0+

Ttf − f

t
.

Not all operators can be generator of semigroup. Generators of semigroup have many specific
properties. For example,

Theorem 1.5.22. [72, p.51] The generator of a strongly continuous semigroup is closed and
densely defined. In addition, it determines the semigroup uniquely.

More precisely, the following theorem is due to Hille and Yoshida gives the necesssary and
sufficient conditions for an unbouned operator A to be able to generate a strongly continuous
contraction semigroup.
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Theorem 1.5.23 (Hille-Yoshida). [72, p.73] An unbounded linear operator A on B generates
a strongly continuous contraction semigroup if and only if:

• A is densely-defined and closed,

• Spec(A) ⊂ (−∞, 0], and

• ∥(λId−A)−1∥ ≤ 1
λ for all λ > 0,

where the spectrum Spec(A) := {λ ∈ C : λId−A is not bijective}.

Remark 1.5.24. When λId−A is bijective, by closed graph theorem, its inverse (λId−A)−1

is a continuous closed operator. Therefore, ∥(λId−A)−1∥ <∞.

Note that in practice, we usually only determine the value of Af for f within a small, well-
behaved subspace D of D(A), rather than for the entire domain D(A). In fact, D(A) is rarely
expressed in a simple manner, and Af in many cases must be defined indirectly, which can
introduce unnecessary complexities into the reasoning process. Thus,

Definition 1.5.25. We also say that an unbouned operator (A, D) generates a semigroup
(Pt)t≥0 if the closure of (A, D) is the generator of (Pt)t≥0.

1.5.3 Contractivity of semigroups

In this thesis (see Chapter 3), the contractivity properties of the semigroups will be use, as
they are related with the long-time behavior or the associated stochastic processes. Let us first
introduce this notion (see e.g. [120, Section 2.6.3]).

For p and q ∈ [1,+∞], and for an operator P , we define the operator norm:

∥P∥p→q = sup
{
∥Pf∥q : f ∈ Lp, ∥f∥p ⩽ 1

}
. (1.29)

Definition 1.5.26. A semigroup (Pt)t⩾0 is called :

• ultracontractive if ∥Pt∥2→∞ < +∞ for any t > 0.

• supercontractive if ∥Pt∥2→4 < +∞ for any t > 0.

• hypercontractive if ∥Pt∥2→4 ⩽ 1 for some t > 0.

Many criteria associated with measure concentration and functional inequalities exist in the
literature and we refer to [120] for a complete exposition.

Lemma 1.5.27. [120, Theorem 3.5.5.] The semigroup (Pt) associated to the operator A is
ultracontractive. In other words, for each t > 0, there is a minimal positive value ut > 0, such
that for any bounded measurable function f , we have

∥Ptf∥∞ ≤ ut∥f∥L1(µ). (1.30)

1.5.4 Stochastic differential equations and diffusions on manifolds

In this section, we now explain what are semi-martingales on manifolds and extend the notions
of stochastic differential equations seen in Section 1.2 to manifolds. We will revisit several
foundational results in the theory of SDEs on manifolds, and our primary focus will be on
relaxing the regularity conditions typically imposed on the coefficient functions of SDEs. The
main source guiding this exploration is Chapter 1 of Hsu’s book [67] where the smoothness of
coefficient functions is assumed in general. We can also refer to [68].
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1.5.4.1 Semimartingales on M

Definition 1.5.28 (M-valued semimartingale). Let τ be a stopping time. A continuous, M-
valued process X defined on [0, τ) is called an M-valued semimartingale if f(X) is a real-valued
semimartingale on [0, τ) for all f ∈ C2(M).

Continuous real-valued martingales can be written as solutions of SDEs driven by Brownian
motions (see [69, Section II.2]). On manifold, the stochastic integrals are expressed using
the Stratonovitch integral (see [98, page 82]) rather than the Itô integral, that leads to less
convenient formulas when working on manifolds. The Stratonovitch integral is defined as follows:

Definition 1.5.29 (Stratonovitch integral). Let X,Y be two continuous real-valued semimartin-
gales. The Stratonovitch integral of Y with respect to X, denoted by

∫ t
0 Ys ◦ dXs, is defined by∫ t

0
Ys ◦ dXs :=

∫ t

0
YsdXs +

1

2
⟨Y,X⟩t,

where the first term is the Itô integral of Y with respect to X and ⟨., .⟩ is the bracket process
(also known as the quadratic covariation process).

With the Stratonovitch integral, the classical Itô formula can then be written is the following
way (see [98, Theorems 20-21, pages 277-278], [68, Th. III.1.3 p.101]), for a continuous d-
dimensional semimartingale X and a function f : Rd → R of class C2: f(X) is a semimartingale
and

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs) ◦ dXi

s. (1.31)

Because of this chain rule that holds under a more convenient form as in the ordinary calculus,
the Stratonovitch integral is better fitted to differential calculus on manifolds than the usual
Itô integral.

We recall that a vector field V on a manifold M is a family {V (x)}x∈M such that ∀x ∈ M,
V (x) ∈ TxM (see for e.g. [77, Chapter 4]). In local coordinates (x1, x2, ..., xd), a smooth vector
field V can be represented as

V (x) =

d∑
i=1

V i(x)
∂

∂xi

∣∣∣∣
x

,

where V 1, . . . , V d are real smooth functions on the domain of the local coordinate system, and
where

{
∂
∂xi

}
1≤i≤d denotes a basis of TxM.

Proposition 1.5.30 (Theorem 1.2.9 in [67]). Let l ≥ 1. Consider the Stratonovich SDE

dXt =
l∑

α=1

Vα(Xt) ◦ dBα
t + V0(Xt)dt (1.32)

where (Vα)0≤α≤l are C2 vector fields on M and B = (Bα)1≤α≤l is the standard l-dimensional
Brownian motion. Then, there exists a unique strong solution to (1.32) (up to explosion time)
whose infinitesimal generator is

Af(x) = 1

2

l∑
α=1

(
V 2
α f
)
(x) + (V0f)(x),

where
(
V 2
α f
)
(x) := (Vα(Vαf))(x), and whose carré du champ operator is given by

Γ(f, g) =
1

2

l∑
α=1

Vα(f)Vα(g),
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where by definition

Γ(f, g) =
1

2
(A(fg)− fA(g)− gA(f)) .

Notice that (1.32) is a SDE on M because the Vα’s are vector fields on M. Extending these
fields to the whole ambient space allows to solve the SDE in Rm using Picard’s iterations.
Provided the initial condition lies in M, then the solution remains on the manifold, [67, Prop.
1.2.8].
From the Itô formula, remark that the distribution of the solution of the SDE (1.32) is also
characterized by the fact that for all f ∈ C∞(M),

f(Xt) = f(X0) +

∫ t

0

l∑
α=1

Vαf(Xs) ◦ dBα
s +

∫ t

0
V0f(Xs) ds.

As for Euclidean semimartingales, we can show that all continuous semimartingales on M solve
a SDE of the form (1.32).

Proposition 1.5.31 (Chapter 2 [67]). If (Xt) is a continuous semimartingale on M, then
there are m smooth vector fields V1, ..., Vm and a Rm-valued semimartingale W = (W i)1⩽i⩽m
such that:

dXt =
m∑
i=1

Vi(Xt) ◦ dW i
t ,

where
∫
·◦dW i

t denotes the Stratonovich stochastic integral with respect to the Brownian motion
W i (see [68, Chapter III]).

1.5.4.2 Brownian motion on M

We are now in position to define the Brownian motion on the manifold M. Let {ξα}1≤α≤m
be an orthonormal basis on Rm of which M is here considered to be a submanifold. For each
x ∈ M, we consider Pα(x) the orthogonal projection of eα to TxM. Let us note that Pα is a
vector field on M. In a local coordinate system (x1, x2, ..., xd),

Pα(x) =
d∑
i=1

P iα(x)
∂

∂xi

∣∣∣∣
x

.

Recall Equation (1.22) from Theorem 1.4.6, that the Laplace-Beltrami operator satisfies ∆ =∑m
α=1 P

2
α and remark that for two real-valued functions of class C2 on M, we have:

⟨∇f,∇h⟩ =
m∑
α=1

(Pαf)(Pαh). (1.33)

Then, as an application of Proposition 1.5.30, we have the following result.

Proposition 1.5.32. There exists a unique strong solution starting at x ∈ M to the following
SDE

dXt =
√
2

m∑
α=1

Pα(Xt) ◦ dBα
t , (1.34)

that has the infinitesimal generator ∆. This solution is defined as the Brownian motion on
the manifold M.



1.5. OPERATOR THEORY 35

Example 1.5.33. Consider M = Sm the unit sphere of Rm+1. The projection to the tangent
sphere at x ∈ Sm is

P (x)ξ = ξ − ⟨ξ, x⟩x, (1.35)

for any ξ ∈ Rm+1. From this, we deduce that (1.38) becomes:

Xi
t = Xi

0+

∫ t

0

m∑
α=1

(
1α=i−Xα

s X
i
s

)
◦dBα

s , 1 ⩽ i ⩽ m+1, X0 = (X1
0 , . . . X

m+1
0 ) ∈ Sm. (1.36)

This is known as Stroock’s representation of the spherical Brownian motion.

1.5.4.3 Other diffusions on M

Another application of Proposition 1.5.30 is that the SDE corresponding to the operator Apq

defined in (1.27) is:

dXt =

m∑
α=1

√
2q(Xt)Pα(Xt) ◦ dBα

t +

m∑
α=1

(
1

2
(Pαq)(Xt) + q(Pα(ln p))(Xt)

)
(Pαf)(Xt) (1.37)

for (Bα)1≤α≤m independent Euclidean 1-dimensional Brownian motions. Taking q ≡ 1, we
deduce that the unique solution to the SDE

dXt =
√
2

m∑
α=1

Pα(Xt) ◦ dBα
t +

m∑
α=1

Pα(ln p)(Xt)Pα(Xt)dt, (1.38)

has the infinitesimal generator Lf = ∆f + ⟨∇ ln p,∇f⟩, which reduced to ∆ and (1.38) if we
have additionally that p ≡ 1.

1.5.5 Non-smooth non-symmetric elliptic operators on manifolds

In this section, we investigate second-order differential operators on manifolds, particularly
focusing on those that may lack smoothness or symmetry (with respect to a certain measure).
Our objective is to establish a theoretical foundation that ensures the rigor of analyses related
to diffusion processes generated on manifolds. Specifically, we consider operators of the form:

Af(x) =
d∑
i=1

bi(x)
∂f

∂xi
(x) +

d∑
i,j=1

aij(x)
∂2f

∂xi∂xj
(x), (1.39)

where x is a point on a manifoldM, f is a twice differentiable function onM, and (x1, x2, . . . , xd)
are local coordinates around x. The coefficients bi(x) and aij(x) are assumed to be twice
differentiable functions.
Amongst other classic results, the main result of this section is the establishment of conditions
under which a non-smooth, non-symmetric elliptic operator A on a manifold M generates a
unique Feller semigroup and is essentially self-adjoint when considered as an operator on L2(µ).
This result provides a foundation for our later analysis on manifolds.
For readers interested in the special case of smooth symmetric elliptic operators in Rd, we rec-
ommend the discussion presented by Baudoin in Chapter 4 of [14].

Assumption 1. Throughout this section, we adopt the following notations and assumptions:

• The operator A : C2
c (M) → C0(M) is an elliptic differential operator. In any local co-

ordinate system (x1, x2, . . . , xd) on M, the corresponding coefficient functions aij(x) and
bi(x) are twice differentiable.
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• The manifold M is a d-dimensional embedded submanifold without boundary of Rm.

• The measure µ is a probability Borel measure on M.

• The space W (M) denotes the set of all continuous processes taking values in M.

We now present the results concerning the operator A and its associated semigroups.

Proposition 1.5.34. Suppose there exist functions b̃ : Rm → Rm and σ̃ : Rm → Rm×m satisfying
the following conditions:
(i) The functions b̃ and σ̃ are bounded and locally Lipschitz continuous.
(ii) The operator Ã, defined by

Ãf =
1

2

m∑
i,j=1

ãij
∂2f

∂xi∂xj
+

m∑
i=1

b̃i
∂f

∂xi
, with ã = σ̃σ̃⊤,

extends the operator A; that is, Ãf = Af for all f ∈ C2
c (M).

Then, the operator A generates a unique semigroup (Pt)t⩾0 on C0(M). Moreover, this semigroup
is a contraction, strongly continuous, and has the Feller property.

Proof. Since b̃ and σ̃ are bounded and locally Lipschitz continuous, the stochastic differential
equation (SDE)

dX̃t = b̃(X̃t) dt+ σ̃(X̃t) dBt

has a unique strong solution for any initial condition X̃0 = x ∈ Rm, where Bt is a standard
Brownian motion in Rm. This uniqueness is ensured by standard results on SDEs with Lipschitz
coefficients, see Theorem 1.2.2.
The associated semigroup (P̃t)t⩾0 on Rm is defined by

P̃tf̃(x) = Ex
[
f̃(X̃t)

]
,

for f̃ ∈ C0(Rm). This semigroup is strongly continuous and satisfies the Feller property, meaning
it maps continuous functions vanishing at infinity into themselves and preserves the maximum
norm. The boundedness of the coefficients ensures that P̃t is a contraction semigroup.
Since Ã extends A, for any f ∈ C2

c (M), we have Ãf = Af . Therefore, any A-diffusion process
Xx starting at x ∈ M is also a Ã-diffusion process when considered in Rm. By the uniqueness
of solutions to the martingale problem associated with Ã, the processes Xx and X̃x have the
same law on the path space W (Rm) when started at x ∈ M.
Therefore, for all f ∈ C2

c (M), extended to f̃ ∈ C2
c (R

m), and for all x ∈ M and t > 0, we have

Ptf(x) = P̃tf̃(x).

This equality shows that the semigroup (Pt)t⩾0 on C0(M) inherits the contraction, strong con-
tinuity, and Feller properties from (P̃t)t⩾0. The uniqueness of (Pt) follows from the uniqueness
of (P̃t).

Remark 1.5.35. The boundedness of the coefficients b̃ and σ̃ is crucial for ensuring the strong
continuity of the associated semigroup. Relaxing this condition may lead to semigroups that are
not strongly continuous, which would complicate the analysis.

Remark 1.5.36. Since M is an embedded submanifold, under the initial assumptions on A,
there always exists a second-order elliptic differential operator Ã on Rm that extends A. The
challenge lies in ensuring that Ã satisfies the boundedness and Lipschitz conditions required in
Proposition 1.5.34. Constructing such an extension may involve extending the coefficients bi(x)
and aij(x) to functions on Rm with the desired properties.
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As a direct consequence, we have the following corollary.

Corollary 1.5.37. If M is compact, then A generates a unique semigroup (Pt)t⩾0 on C0(M).
Moreover, this semigroup is a contraction, strongly continuous, and has the Feller property.

Proof. On a compact manifold, continuous functions are automatically bounded, and locally
Lipschitz functions are globally Lipschitz. Therefore, the conditions of Proposition 1.5.34 are
satisfied without the need for further adjustments. The conclusion follows directly.

We next consider the extension of the semigroup to Lebesgue spaces Ls.

Theorem 1.5.38. Suppose that M is compact, µ a positive measure on M, and that for all
f ∈ C2

c (M), we have ∫
M

Af dµ = 0.

Then, for each s ∈ [1,∞) and t > 0, there exists a unique continuous operator P
(s)
t : Ls(µ) →

Ls(µ) such that

P
(s)
t f = Ptf for all f ∈ Cc(M).

Proof. Let A : D(A) → C0(M) denote the closure of A in C0(M). Since A generates a contrac-
tion semigroup on C0(M), for all f ∈ C2

c (M) and t > 0, we have Ptf ∈ D(A).
For such f and t, there exists a sequence (gn)n∈N ⊂ D(A) such that

APtf = lim
n→∞

Agn in C0(M).

Therefore, ∫
M

APtf dµ = lim
n→∞

∫
M

Agn dµ = 0.

This implies that the mapping t 7→
∫
M Ptf dµ is constant in t. Since at t = 0 we have∫

M P0f dµ =
∫
M f dµ, it follows that∫

M
Ptf dµ =

∫
M
f dµ for all t > 0.

Consequently, for f ∈ C0(M),

∥Ptf∥L1(µ) = ∥f∥L1(µ) and ∥Ptf∥L∞(µ) ⩽ ∥f∥L∞(µ).

By the Riesz–Thorin interpolation theorem, Pt extends uniquely to a contraction on Ls(µ) for
each s ∈ [1,∞). The density of Cc(M) in Ls(µ) ensures that this extension is unique and

continuous. We denote this extension by P
(s)
t .

We now address the essential self-adjointness of A.

Theorem 1.5.39. If A : C2
c (M) → C0(M) ⊂ L2(µ) is symmetric and the measure µ has a

strictly positive density on M, then A is essentially self-adjoint when considered as an un-
bounded operator on L2(µ).

Proof. Since A is symmetric on the Hilbert space H = L2(µ), we have∫
M

Af dµ = 0 for all f ∈ C2
c (M).

By Theorem 1.5.38 with s = 2, the closure A : D(A) → H of A generates a semigroup (P
(2)
t )t⩾0

on H, satisfying P
(2)
t f = Ptf for all f ∈ Cc(M).
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The operator A is symmetric, being the closure of a symmetric operator. Moreover, since A
generates (P

(2)
t )t⩾0, we have P

(2)
t f ∈ D(A) for all t > 0 and f ∈ Cc(M).

Consider the function

F (s) = ⟨P (2)
s f, P

(2)
t−sg⟩L2(µ),

for fixed t > 0 and f, g ∈ Cc(M). This function is constant in s ∈ [0, t]. Indeed, for 0 < s < t,
we compute

d

ds
F (s) = ⟨AP (2)

s f, P
(2)
t−sg⟩L2(µ) − ⟨P (2)

s f,AP (2)
t−sg⟩L2(µ) = 0,

since A is symmetric. This implies that

F (s) = F (0) = ⟨f, P (2)
t g⟩L2(µ) for all s ∈ [0, t].

Therefore, the semigroup (P
(2)
t ) is self-adjoint, meaning that (P

(2)
t )∗ = P

(2)
t . Consequently,

the generator A is self-adjoint, and since A is densely defined, it follows that A is essentially
self-adjoint.

Remark 1.5.40. Although A is symmetric, this does not guarantee that its adjoint A∗ is
symmetric unless A is self-adjoint. The essential self-adjointness of A means that its closure
A is self-adjoint, ensuring that the operator has a unique self-adjoint extension. This property
is significant in applications, as it allows the use of spectral theory to analyze the operator and
the semigroup it generates. One approach to understanding this relationship is to analyze the

semigroup (P
(2)
t ) and its connection to the associated stochastic differential equation. For further

discussion, see Section 4.5.1 in [14], where a similar problem is considered in the Euclidean
setting.

1.5.6 Wasserstein distance

The Wasserstein distance (also known as the Earth Mover’s distance) is a metric that measures
the distance between two probability distributions on a given metric space. It is commonly used
in optimal transport theory. The most frequently used version is the Wasserstein-1 distance
and the more general Wasserstein-q distance.

Definition 1.5.41. [12, p.436] Let (M, ρ) be a metric space, and let µ and ν be two probability
measures on M. The Wasserstein-q distance between µ and ν, for q > 0, is defined as:

Wq(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
M×M

ρ(x, y)q dγ(x, y)

) 1
q

,

where:

• ρ(x, y) is the metric (or distance) between two points x and y in the space M,

• Π(µ, ν) is the set of all couplings (or transport plans) of µ and ν, meaning the set of all
probability measures γ on M×M with marginals µ and ν.

The Wasserstein distance measures the ”cost” of transforming one probability distribution into
another, where the ”cost” is defined by the metric ρ(x, y), which measures the distance between
points x and y, and the optimal transport plan γ, which minimizes the total cost of this
transformation.

In particular, for the Wasserstein-1 distance (with q = 1), the distance can be interpreted as
the minimum amount of ”work” required to move probability mass from the distribution µ to
the distribution ν.
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Example 1.5.42 (1-Wasserstein distance on R). For probability distributions µ and ν on the
real line R, the Wasserstein-1 distance can be simplified to:

W1(µ, ν) =

∫ 1

0
|F−1
µ (t)− F−1

ν (t)| dt,

where F−1
µ and F−1

ν are the quantile functions (inverse cumulative distribution functions) of µ
and ν, respectively.

This gives a way to compute the Wasserstein distance between two distributions in 1D based on
their quantiles.

It can also be shown that Definition 1.5.41 for q = 1 is also equivalent to:

W1(µ, ν) = sup
f is 1-Lipschitz

(∫
M
fdµ−

∫
M
fdν

)
, (1.40)

see [45, Proposition 2.6.6].

Intuitively speaking, the Wasserstein distance provides a way to compare probability distribu-
tions in terms of how much ”effort” is needed to morph one distribution into another based on
the underlying metric space. Thus, the nature of the underlying also a special role in Wasserstein
distance analysis.

For example, when M is a Riemannian manifold, beyond focusing on measure coupling to
estimate the corresponding Wasserstein distances, Peyre [96] proposed the following estimate,
providing an upper bound for the Wasserstein distance using an analytic norm.

Theorem 1.5.43. Given a compact Riemannian manifold (with or without border) M
Then, for all probability measures µ and ν on M, we have:

W2(µ, ν) ≤ 2∥µ− ν∥H−1(µ),

where

∥µ− ν∥H−1(µ) := sup
g:
∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)
.

Moreover,

W2(µ, ν) ≤ 2 sup
g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)
, (1.41)

where Lip(M) denotes the space of all Lipschitz continuous functions on M.

Proof of Theorem 1.5.43. The result is due to [96] but we provide a new proof, as the one
provided by Peyre holds only under additional assumptions that were not detailed in his paper
and that are not necessary in this proof. Consider the Hamilton-Jacobi semigroup (Qt)t>0 on
Lip(M):

Qtϕ(x) := inf
y∈M

{
ϕ(y) +

1

2t
ρ(y, x)2

}
, t > 0, ϕ ∈ Lip(M),

where ρ is the geodesic distance of M.

From [81, Theorem 2.5], for any ϕ continuous bounded, Q0ϕ := limt→0Qtϕ = ϕ, ∥∇Qtϕ∥∞ is
bounded for all t > 0, and Qtϕ solves the Hamilton-Jacobi equation:

d

dt
Qtϕ = −1

2
|∇Qtϕ|2, t > 0. (1.42)
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As used in [120], the Kantorovich dual formula implies that (see [119, Theorem 2.10]):

1

2
W2

2 (µ, ν) = sup
ϕ∈Lip(M) bounded

{ν(Q1ϕ)− µ(ϕ)}.

Consider the following curve on the space of measures (µt)0≤t≤1 defined by

µt := (1− t)µ+ tν.

By taking the derivative along t, we have that for all ϕ continuous and bounded:

d

dt
(µt(Qtϕ)) = −1

2

(∫
M

|∇Qtϕ|2dµt
)
+

∫
M
Qtϕd(ν − µ).

We now analyze the above term. Let t be in (0, 1).
If
∫
M |∇Qtϕ|2dµt > 0, by the fact that −1

2a
2 + ab ≤ 1

2b
2 for all a, b real, we have:

− 1

2

(∫
M

|∇Qtϕ|2dµt
)
+

∫
M
Qtϕd(ν − µ)

≤ 1

2

(∫
MQtϕd(ν − µ)

)2∫
M |∇Qtϕ|2dµt

≤ 1

2
sup

g∈Lip(M):∫
M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

(1.43)

If
∫
M |∇Qtϕ|2dµt = 0 and

∫
MQtϕd(ν − µ) = 0, clearly we have

−1

2

(∫
M

|∇Qtϕ|2dµt
)
+

∫
M
Qtϕd(ν − µ) ≤ 1

2
sup

g∈Lip(M):∫
M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

. (1.44)

If
∫
M |∇Qtϕ|2dµt = 0 and

∫
MQtϕd(ν −µ) ̸= 0, using the Lipschitz function α×Qtϕ on M for

any arbitrary α ∈ R \ {0}, we remark that

sup
g∈Lip(M):∫

M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

= ∞, (1.45)

and clearly

−1

2

(∫
M

|∇Qtϕ|2dµt
)
+

∫
M
Qtϕd(ν − µ) ≤ 1

2
sup

g∈Lip(M):∫
M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

. (1.46)

Hence, for all t ∈ (0, 1),

d

dt
(µt(Qtϕ)) ≤

1

2
sup

g∈Lip(M):∫
M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

,

which implies

W2
2 (µ, ν) ≤

∫ 1

0
sup

g∈Lip(M):∫
M |∇g|2dµt≤1

(∫
M
gd(µ− ν)

)2

dt.
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Besides, µt ≥ (1 − t)µ for all t ∈ (0, 1). Thus, for all g with
∫
M |∇g|2dµt ≤ 1, we have

(1− t)
∫
M |∇g|2dµ ≤ 1. This leads to the fact that for all 0 < t0 < t1 < 1, the following holds

W2
2 (µt0 , µt1) ≤

∫ 1

0
sup

g∈Lip(M):
(1−t1)

∫
M |∇g|2dµ≤1

(
(t1 − t0)

∫
M
gd(µ− ν)

)2

dt

≤ (t1 − t0)
2

1− t1
sup

g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)2

.

Hence, for any n ∈ N∗ and 0 < t0 < t1 < ... < tn < 1, we have:

W2(µt0 , µtn) ≤
n∑
i=1

W2(µti−1 , µti) ≤
n∑
i=1

ti − ti−1√
1− ti

sup
g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)

Thus, for all 0 < t0 < t1 < 1, by convergence of the Riemann sum,

W2(µt0 , µt1) ≤
(∫ t1

t0

1√
1− t

dt

)
sup

g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)

= 2(
√
1− t0 −

√
1− t1) sup

g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)
.

By taking t0 → 0 and t1 → 1, we obtain that:

W2(µ, ν) ≤ 2 sup
g∈Lip(M):∫
M |∇g|2dµ≤1

(∫
M
gd(µ− ν)

)
,

which is our desired conclusion.

1.6 Thesis contributions

In this section, I present a summary of the results obtained through my research and collabo-
rations from the following papers:

• Strong uniform convergence of Laplacians of random geometric and directed k-NN graphs
on compact manifolds, Guérin, H., Nguyen, D.-T., and Tran, V., 2022, doi.org/10.

48550/arXiv.2212.1028, [61]

• Measure estimation on a manifold explored by a diffusion process, Divol, V., Guérin, H.,
Nguyen, D.-T., and Tran, V. C., 2024, doi.org/10.48550/arXiv.2410.11777, [38]

• 1-Wasserstein minimax estimation for general smooth probability densities, D.-T. Nguyen,
2024+, in preparation.

The organization of this section is as follows: Section 1.6.1 discusses the convergence of graph
Laplacians based on [61], Section 1.6.2 presents the results from [38], and Section 1.6.3 introduces
our initial findings from the forthcoming paper.

doi.org/10.48550/arXiv.2212.1028
doi.org/10.48550/arXiv.2212.1028
doi.org/10.48550/arXiv.2410.11777
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1.6.1 Convergence of graph Laplacians

In this work, [61], we investigate the convergence of random operators on compact smooth
manifolds, with particular emphasis on the convergence of graph Laplacians built from random
samples.
More precisely, its goal is to study the uniform convergence speed of the following random
operators (1.47)(1.48) defined on random points, and to derive probabilistic bounds on their
deviations.

1.6.1.1 Analysis Framework

We work with a compact smooth d-dimensional submanifold M of Rm, endowed with the Rie-
mannian structure induced by the ambient space Rm. Let (Xi)i∈N be a sequence of independent
and identically distributed (i.i.d.) points sampled from the probability measure p(x)µ(dx) on
M, where p ∈ C2(M) is a continuous density function with respect to the volume measure µ of
M.
These are two principal types of random measure we will work with in this paper. The first one
is the graph Laplacian induced by a fixed kernel K : R+ → R+ and a deterministic sequence of
bandwidths (hn):

Ahn,n(f)(x) :=
1

nhd+2
n

n∑
i=1

K

(
∥x−Xi∥2

hn

)
(f(Xi)− f(x)) , (1.47)

where K satisfies the following assumption.

Assumption 2. The kernel K : R+ → R+ is a measurable function with K(∞) = 0 and
bounded variation H, such that: ∫ ∞

0
ad+3 dH(a) <∞.

The second is the graph Laplacian induced from a family from k-nearest neighbor graphs cor-
responding to a sequence of integers (kn)n≥0:

AkNN
n (f)(x) :=

1

nrn(x)d+2

n∑
i=1

K

(
∥x−Xi∥2
rn(x)

)
(f(Xi)− f(x)) , (1.48)

where rn(x) is the shortest radius such that there exists at least kn points Xi with 1 ≤ i ≤ d
that lie in the ball BRm(x, rn(x)), i.e.,

rn(x) := min {r : there are at least kn index i ∈ [1, n] such that: ∥x−Xi∥ ≤ r} .

1.6.1.2 Previous Work & Contributions

The convergence of graph Laplacians constructed from random samples has been extensively
studied in the literature [115, 55]. Giné and Koltchinskii [55] considered Gaussian kernels and
established convergence results under strong smoothness assumptions on the kernel K. Their
work provided foundational results for the statistical analysis of graph-based methods.
Calder and Garćıa Trillos [25] obtained deviation inequalities for random operators similar
to those we study, but their results did not include uniformity over classes of test functions.
Additionally, their analysis required stronger assumptions on the regularity of the kernel and
the underlying manifold.
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Our work generalizes these previous results by weakening the assumptions on the kernel func-
tion and providing uniform convergence results over a class of functions. This allows for non-
continuous or non-smooth kernels, such as indicator functions, broadening the applicability of
our results to a wider range of graph structures used in practice, including ε-geometric and
k-nearest neighbor (kNN) graphs

1.6.1.3 Main Theorems

Theorem 1.6.1 (Uniform Convergence of Random Operators). Under Assumption 2 on the

kernel K, where hn → 0 and log h−1
n

nhd+2
n

→ 0 as n → ∞, we have that, almost surely, for every

function f ∈ C3(M),

sup
x∈M

|Ahn,n(f)(x)−A(f)(x)| = O

√ log h−1
n

nhd+2
n

+ hn

 , (1.49)

where A is the second-order differential operator on M defined as:

A(f)(x) = c0

(
⟨∇p(x),∇f(x)⟩+ 1

2
p(x)∆f(x)

)
,

with ∇ and ∆ being the gradient and Laplace-Beltrami operators on M, respectively, and

c0 =
1

d

∫
Rd

K (∥v∥2) ∥v∥22 dv.

Remark 1.6.2. The constant facteur the convergence speed estimation (1.49) depends only on
the embedding M ⊂ Rm, K and ∥f∥C3.

Here, to obtain results on uniform convergence, we apply the use of the Vapnik-Chervonenkis
theory from the [55] paper with our generalized kernel. This result broadens the scope of
investigation in Ting’s work [115], where uniform convergence was considered only for a finite
number of points.

This proof also provides a deviation inequality:

Theorem 1.6.3 (Deviation inequality). There exists a constant C ′ > 0 such that for all n, h, δ

satisfying: h ∨
√

log h−1

nhd+2 ⩽ δ ⩽ 1,

P

(
sup
f∈F

sup
x∈M

|Ah,n(f)(x)−A(f)(x)| > C ′δ

)
⩽ exp

(
−nhd+2δ2

)
.

where F := {f ∈ C3(M) : ∥f∥C3 ≤ 1}.

On top of that, we observe that the bandwidths used to define Ahn,n are not necessarily deter-
ministic or pre-determined for the convergence result to be valid. Indeed, only certain suitable
convergence conditions for (hn) are required.

This observation leads to our extension of our analysis to the convergence of Laplacians con-
structed from k-nearest neighbor (kNN) graphs.

Theorem 1.6.4. Under Assumption 1 on K and the condition 0 < pmin ⩽ p(x) ⩽ pmax for all
x ∈ M, along with the following conditions on kn, the number of nearest neightbors to consider,

lim
n→∞

kn
n

= 0, and lim
n→∞

1

n

(
kn
n

)−1−2/d

log

(
kn
n

)
= 0,
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we have that, almost surely,

sup
x∈M

∣∣∣AkNN
n (f)(x)−A(f)(x)

∣∣∣ = O

(√
log

(
n

kn

)
1√
kn

(
n

kn

)1/d

+

(
kn
n

)1/d
)
.

Here, AkNN
n is a normalized graph Laplacian constructed from the kNN graph with kn-nearest

neighbors for the first n random points (Xi)1≤i≤n, see Equation (1.48).

1.6.2 Convergence in Wasserstein distance of occupation measure with convolu-
tion

The manifold hypothesis has become ubiquitous in modern machine learning, explaining the
efficiency of nonparametric methods in high-dimensional statistical models [23]. This paradigm
has motivated statisticians to study inference problems under manifold constraints [91, 52, 2,
36, 99]. Given n i.i.d. samples from a distribution µ supported on a d-dimensional manifold M,
the task of estimating either µ or geometric quantities related to M naturally arises. In this
section, µ is a probability measure on M, while the volume measure is denoted by dx.

However, when leaving the i.i.d. setting, the literature is less abundant. A natural framework
arises when data is generated through an exploration process, such as a random walk on a graph
approximating the manifold (e.g., the PageRank algorithm [94]). In the limit, this random walk
converges to a continuous-time diffusion exploring the manifold.

Our goal is to propose reconstruction methods for the measure µ based on the observation of the
sample path (Xt)t∈[0,T ]. In this work, we introduce a kernel-based estimator for the invariant
measure µ of a diffusion process on a manifold M, providing improved convergence rates in the
Wasserstein distance compared to previous methods. By smoothing the occupation measure
µT , we achieve minimax optimal rates under mild regularity conditions on the density p and
the diffusion generator A. These results contribute to the understanding of statistical inference
in non-i.i.d. settings on manifolds and have potential applications in machine learning and data
analysis involving manifold-valued data.

1.6.2.1 Analysis Framework

Consider a diffusion process (Xt)t∈[0,T ] on a compact submanifold without boundary M ⊆ Rm,
generated by a uniformly elliptic C2-differential operator A, symmetric with respect to some
invariant measure µ.

The general framework includes operators of the form Apq, defined by (1.27) in Section 1.5.1.

1.6.2.2 Previous Work & Contributions

In Rm, the estimation of the invariant measure of a diffusion has been extensively studied
[30, 42, 95, 102]. For manifold-valued data, the problem of reconstructing the stationary measure
µ from a sample path was first addressed by Wang and Zhu [121] for the generator L. They
considered the occupation measure µT , defined for every bounded measurable test function f
by ∫

M
f(x)µT (dx) =

1

T

∫ T

0
f(Xs) ds. (1.50)

They showed that for the process with generator L,

Ex
[
W2

2 (µT , µ)
]
≲


T−1 if d ⩽ 3,

T−1 ln(1 + T ) if d = 4,

T−2/(d−2) if d ⩾ 5,

(1.51)
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where Ex denotes the expectation taken from the diffusion process starting at x ∈ M, and W2

is the 2-Wasserstein distance with the geodesic distance ρ on M.
We extend these results beyond the i.i.d. setting by studying the convergence properties of an
estimator µ̂T,h of µ, obtained by smoothing the occupation measure µT with a kernel K of
bandwidth h > 0. When d ⩾ 5 and for an appropriate choice of h, we obtain the rate of
convergence

Ex
[
W2

2 (µ̂T,h, µ)
]
≲ T− 2ℓ+2

2ℓ+d−2 , (1.52)

where µ has a density of regularity ℓ ⩾ 2. This rate not only holds for the Langevin diffusion
with generator L but for all diffusion paths (Xt)t∈[0,T ] whose generator A is a uniformly elliptic
C2-differential operator, symmetric with respect to µ.
Furthermore, we show that these rates cannot be improved by providing minimax rates of
convergence for this problem.

1.6.2.3 Main Theorem

The first result we obtained is an indirect estimate for the the convergence of µ̂T,h.

Theorem 1.6.5 (Estimation from a Diffusion with Generator A). Let d ⩾ 1 and p be a positive
C2 density function with associated measure µ. Let (Xt)t⩾0 be a diffusion with generator A
which is a uniformly elliptic C2-differential operator, symmetric with respect to µ.
Let 0 < h ⩽ h0 for some constant h0 depending on M and K. Assume that either K is
nonnegative or that d ⩾ 4 and Thd ⩾ c ln(T ) (in which case, h0 additionally depends on the
C1-norm of p). Then,

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µh)
]
⩽ c0

uA p
2
max

p2min

∥K∥2∞


h4−d

T
if d ⩾ 5,

ln(1/h)

T
if d = 4,

1

T
if d ⩽ 3,

(1.53)

where:

• µh is the convolution of µ with K.

• c0 depends on M.

• uA is the ultracontractivity constant of A (see Section 1.5.3).

• pmin and pmax are bounds on p.

Remark 1.6.6. The role of the ultracontractivity constant µA is to control the additional latency
in the convergence speed due to the deviation from µ, the invariant measure, of the initial
measure of X.
In general, ultracontractivity refers to a property of certain semigroups (e.g., those generated
by diffusion operators), which ensures that the semigroup maps L2 functions to L∞ functions
in a controlled way. This property can be characterized by an ultracontractivity constant that
quantifies this mapping strength.

Thus, by performing a bias-variance decomposition for the initially considered Wasserstein
distance, along with an optimal bandwidth selection, we obtain the following result, which is
the desired convergence rate:

Theorem 1.6.7. Under a suitable choice for the bandwidth h = h(T ), when T converges to
infinity, we have:

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µ)
]
≲ T− 2ℓ+2

2ℓ+d−2 . (1.54)
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We then analyze the minimax optimality of this result and prove that these rates are minimax
optimal.

Proposition 1.6.8. Let ℓ ⩾ 2 be an integer. Then, for κmin, pmin small enough and pmax,
umax, L large enough,

R(PT,ℓ) ≳

{
T−1/2 if d ⩽ 4,

T− ℓ+1
2ℓ+d−2 if d ⩾ 5,

(1.55)

where R(PT,ℓ) is the minimax rate over the class PT,ℓ of diffusion processes with generators
satisfying the conditions specified above.

This matches the rates achieved by our estimator µ̂T,h, confirming its optimality.

1.6.3 1-Wasserstein minimax estimation for general smooth probability densities

In Chapter 4, we revisit the problem of approximating probability measures with smooth den-
sity under the Wasserstein metric, a topic extensively studied in recent literature [118, 90, 37].
Specifically, given a sample consisting of n independent and identically distributed (i.i.d.) ran-
dom variables drawn from an unknown probability measure µ, our objective is to construct
from this sample an estimator µ̃n for µ that attains optimal asymptotic convergence rates with
respect to the Wasserstein metric W1(µ̃n, µ) when the sample size n goes to infinity.

1.6.3.1 Analysis framework

Recognizing that convergence rates of empirical measures in Wasserstein distance crucially
depend on the dimensional characteristics of the underlying space [46, 90, 37], we divide our
analysis into two distinct scenarios. The first scenario addresses the case where the measure
µ is absolutely continuous with respect to the Lebesgue measure on the Euclidean space Rd.
The second scenario considers the setting in which µ is supported on a low-dimensional space
M, which we assume to be a compact d-dimensional manifold without boundary, smoothly
embedded in a high-dimensional Euclidean space Rm (m > d).
Besides, in statistics, the regularity control on density functions is usually expressed in terms of
Besov norms [57]. Nevertheless, Besov norms are interpolations of Sobolev norms Hs

q (M) [80,
p.152,153]:

∥f∥Hs
q (Rd) =

(∫
Rd

max
1≤i≤s

∥∇ip∥qop(x) dx
)1/q

with s ∈ N and f ∈ C∞(Rd),

∥f∥Hs
q (M) =

(∫
M

max
1≤i≤s

∥∇ip∥qop(x) dx
)1/q

with s ∈ N and f ∈ C∞(M).

For the sake of simplicity, in this chapter, Sobolev norms are the only measure of regularity for
density functions we will use.

Case of Rd.
Let us begin by examining the Euclidean scenarios (Rd, ∥ · ∥2).
Let µ be a probability measure on Rd with density p with respect to the Lebesgue measure of
Rd and X1, X2, ..., Xn be a sample of n i.i.d. random elements sampled from µ. In this setting,
we analyze the asymptotic behavior of the kernel measure estimator µn,h as the sample size n
tends to infinity and the smoothing bandwidth h decreases at an appropriate speed to zero.
This kernel estimator is explicitly defined by:

µ̂n,h(dy) =
1

n

n∑
i=1

h−dK

(
∥Xi − y∥2

h

)
dy, (1.56)
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where h is the smoothing parameter, and the kernel function K : R+ → R is bounded, measur-
able, and supported on [0, 1], satisfying the normalization condition:∫

Rd

K(∥x∥2) dx = 1. (1.57)

This method of estimator construction is called kernel smoothing [63, Chapter 6]. Note that,
the normalization condition Eq (4.5) implies that

µ̂n,h(R
d) = 1, (1.58)

regardless of the choice of n and h.
Then, we formalize the definition of ”k-vanishing kernel” used previously:

Definition 1.6.9 (k-vanishing kernel). Let k be a positive integer. A kernel function K : R+ →
R is said to be a k-vanishing kernel on Rd if, for every integer s ∈ {1, 2, . . . , k}, the kernel
satisfies: ∫

Rd

|K(∥x∥2)| ∥x∥s2 dx <∞, and

∫
Rd

K(∥x∥2) ∥x∥s2 dx = 0.

Case of a manifold M.
Now, let us discuss the framework for the scenario where the measure µ is supported on a
compact manifold M of dimension d ≥ 3 (without boundary), smoothly embedded into a
Euclidean space (Rm, ∥ · ∥2).
Since M is smoothly embedded in Rm, it inherits a natural Riemannian metric induced by the
ambient Euclidean structure. With this metric, M becomes a Riemannian submanifold. We
denote by ρ the geodesic distance associated with this induced metric.
For any probability measure µ ∈ P(M) with density p with respect to the volume measure
on M. Let (X1, X2, ..., Xn) be a sample of n i.i.d random variables of µ. In this scenario, we
investigate the convergence of the kernel estimator µ̂Mn,h as the sample size n tends to infinity
and the smoothing bandwidth h decreases appropriately to zero:

µ̂Mn,h(dy) =
1

n

n∑
i=1

1

hd
K

(
∥Xi − y∥2

h

)
dy, (1.59)

where ∥ · ∥2 is the distance with respect to Rm, dy on the right side represents the volume
measure on M, and the kernel function K : R+ → R is also a measurable bounded function
with support in [0, 1] such that satisfies Eq (4.5).
Note that, unlike in the previous scenario (cf. Eq. (4.6)), the mass of µ̂Mn,h need not equal 1 in
general. To address this issue, the author in [37, p. 7] proposed replacing the kernel K by its
pointwise normalized version in the definition of the kernel estimator µ̂Mn,h. This normalization,
however, introduces additional approximation steps and complexity into their analysis. In our
treatment, we observe that such normalization may lead to avoidable computational complica-
tions. Hence, we retain the original kernel K and instead construct our estimation of µ via µ̂Mn,h
differently.

1.6.3.2 Previous Work & Contributions

Within the Euclidean framework, our results partially overlap with those of [118, 90] in the case
of compactly supported measures under the 1-Wasserstein metric. For this case, compared to
[118, 90], we broaden the existing minimax results to include all probability densities possessing
first moments, without restrictions on the boundedness of their support. Besides, the estimators
given in [118, 90] are wavelet-based, while our choice is kernel estimators which are generally
believed to be more basic and less computationally expensive [62]. Besides, our estimator
achieved the minimax convergence rate.
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For the compact manifold setting, in comparison with [37], our results emphasize that when
focusing on the practically relevant 1-Wasserstein distance [10], the minimax results presented
therein remain valid without imposing additional conditions on uniform lower and upper bounds
for probability densities. Additionally, we establish that our estimator achieves convergence
almost surely at the same rate. To the best of our knowledge, this stronger mode of convergence
has not been previously demonstrated.

An additional refinement we introduced compared to [37], though of minimal practical signif-
icance, is the relaxed regularity requirement on the kernel function K. This adjustment was
made primarily to deepen our theoretical understanding of the problem. More specifically, many
calculations in [37] rely on a Taylor expansion up to relatively high order of K, which is a natural
approach within the context of manifold learning. However, we have always believed that there
must be a deeper geometric rationale behind why this seemingly ‘brutal’ Taylor expansion is
effective.

1.6.3.3 Main results

Our primary theoretical contribution in Rd setting is summarized by the following Theorem
4.1.2 and its Corollary 4.1.3:

Notation 1.6.10 (Modified Vinogradov notations). Throughout this chapter, for A ≥ 0 and
B ≥ 0, we use occasionally A ≲a B as shorthand for the inequality A ≤ CaB for some constant
Ca depending only on a. The same goes for A ≳a B. [112, p.5]

Theorem 1.6.11. Let k ≥ 1 be an integer, assume d ≥ 3, and suppose the kernel K is a
k-vanishing kernel on Rd as specified in Definition 1.6.9.

Then, there is constant C such that for all integers s ∈ {1, 2, . . . , k−1}, any real number q > d,
and h ∈ (0, 1), the following bound holds:

E (W1(µ̂n,h, µ)) ≤ C

(
((Mq(µ))

1/2 + 1)
h1−d/2√

n
+ ∥p∥Hs

1(R
d)h

s+1

)
,

where the q-th moment of µ is defined as

Mq(µ) :=

∫
Rd

∥x∥q2 µ(dx). (1.60)

Moreover, the constant factor C can be chosen to depend only on the integers k, q and the
uniform norm ∥K∥∞ := supx |K(x)| of K.

Corollary 1.6.12. Assume that d ≥ 3. If the density p of µ satisfies that Md+1(µ) < ∞ and
∥p∥Hs

1(R
d) <∞,

Then there exist an explicitly defined kernel measure estimator µ̃n and a constant C such that:

E(W1(µ̃n, µ)) ≤ C × n−
1+s
d+2s , (1.61)

where the constant C only depends on d, ∥K∥∞,Md+1(µ), and ∥p∥Hs
1(R

d).

We intentionally omit the cases d = 1 and d = 2, as these dimensions are already fully covered
by classical results regarding empirical measure approximations [46]. Besides, µ̂n,h is possibly
be a signed measure, but this will not affect the definition of W1 in (4.3).

Our primary theoretical contribution in manifold setting is summarized by the following theorem
and corollary:
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Theorem 1.6.13. Let k ≥ 1 be an integer, assume d ≥ 3, and suppose the kernel K is a k-
vanishing kernel on Rd as specified in Definition 1.6.9. On top of that, we assume K is Lipschitz
on [0, 1].

Then, there is a constant C, such that for all integers s ∈ {1, 2, . . . , k− 1} and n, the following
bound holds:

E
(
W1(µ̂

M
n,h, µ̂

M
n,h(M)µ)

)
≤ C

(
h1−d/2√

n
+ ∥p∥Hs

1(M)h
s+1

)
,

where the Wasserstein distance is defined as in Eq (4.3).

Moreover, the constant factor C can be chosen to depend only on M ⊂ Rm, the integer k, the
uniform norm ∥K∥∞ := supx |K(x)| of K, and the Lipschitz constant of K

∣∣
[0,1]

.

Corollary 1.6.14. Assume that d ≥ 3. If the density p of µ satisfies that ∥p∥Hs
1(R

d) <∞,

Then there exist an explicitly defined kernel measure estimator µ̃n such that:

E(W1(µ̃n, µ)) ≲d,∥p∥
Hs
1(Rd)

,s n−
1+s
d+2s . (1.62)

Moreover, almost surely,

lim sup
n→∞

n
1+s
d+2sW1(µ̃n, µ) = lim sup

n→∞
n

1+s
d+2s E(W1(µ̃n, µ)) <∞. (1.63)

1.7 Future works

Possible future research directions include:

• Central limit theorems: An interest that is frequently discussed is to construct central
limit theorems for the empirical transportation cost Tc(µn, ν) [32, 110], where

Tc(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y), (1.64)

where Π(µ, ν) is the set of all joint probabilities on X × Y with marginals µ, ν. In an
ongoing work, we expect to extend the previously known results on central limits of
empirical transportation to some compact metric spaces. The limit law is proven to be
a supremum of a centered Gaussian process (Bf )f∈Cb(X ) indexed by continuous bounded
functions on X whose covariance function is

CovB : Cb(X )× Cb(X ) −→ R+

(f, g) 7−→ Cov(f(X1), g(X1)). (1.65)

We expect to prove that under suitable but general assumptions on µ or X :

√
n(Tc(µn, ν)− Tc(µ, ν))

(d)−−−→
n→∞

sup
(ψ,ϕ)∈Φc(µ,ν)

(Bψ), (1.66)

where Φc(µ, ν) is the set of optimal potentials of the transportation problems Tc(µ, ν).

• Branching diffusions on manifolds: In [38](cf. Chapter 3) and [121], it has been
shown that the occupation measure of diffusion processes on manifolds exhibits intriguing
convergence properties when evaluated in the Wasserstein distance. However, there is a
scarcity of literature addressing the convergence behavior—either in terms of the Wasser-
stein distance or through entropic optimal transport—of branching diffusion processes.
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We expect that in a first step, we can be able to establish a convergence rate for the oc-
cupation measure of a branching process that is comparable to those known for standard
diffusion processes. That is to study the convergence of:

W2(µ̂T , µ),

where µ̂T is a suitable choice of occupation measure for a branching process X.

• Entropic optimal transport: Recently, the theoretical statistics community has exhib-
ited a growing interest in entropic optimal transport, culminating in several fascinating
findings [97, 39]. One notable result is that the fluctuations (normalized with a n1/2

factor) of the entropic transportation cost between an empirical measure µ̂n and a fixed
measure ν converge in distribution to a Gaussian random variable[34]. This Gaussian
behavior is in stark contrast with the Wasserstein distance, for which such convergence
typically requires additional conditions on the support of the measures and the underlying
spaces[32, 33].

We anticipate that similar results can be obtained for diffusion processes. More precisely,
let (Xt)t≥0 be a diffusion process in Rd. We aim to establish a central limit theorem for
the entropic optimal transportation cost in the form

√
n
(
S(µT , ν)− E

(
S(µT , ν)

)) (d)−−−→
n→∞

N (0, σ2),

where

µT =
1

T

∫ T

0
δXs ds

denotes the occupation measure of the process, S(µT , ν) represents the entropic trans-
portation cost between µT and ν, and σ2 is an appropriate variance parameter.
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Consider n points independently sampled from a density p of class C2 on a smooth compact
d-dimensional sub-manifold M of Rm, and consider the random walk visiting these points
according to a transition kernel K. We study the almost sure uniform convergence of the
generator of this process to the diffusive Laplace-Beltrami operator when n tends to infinity,
from which we establish the convergence of the random walk to a diffusion process on the
manifold. This work extends known results of the past 15 years. In particular, our result does
not require the kernel K to be continuous, which covers the cases of walks exploring kNN and
geometric graphs, and convergence rates are given. The distance between the random walk
generator and the limiting operator is separated into several terms: a statistical term, related
to the law of large numbers, is treated with concentration tools and an approximation term that
we control with tools from differential geometry. The case of kNN Laplacians is detailed. The
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convergence of the stochastic processes having these operators as generators is also studied, by
establishing additional tightness results of their distributions on the space of càdlàg functions.

2.1 Introduction

Let M be a compact smooth d-dimensional submanifold without boundary of Rm, which we
embed with the Riemannian structure induced by the ambient space Rm. Denote by ∥ · ∥2,
ρ(·, ·) and µ(dx) respectively the Euclidean distance of Rm, the geodesic distance on M and
the volume measure on M. Let (Xi, i ∈ N) be a sequence of i.i.d. points in M sampled from
the distribution p(x)µ(dx), where p ∈ C2 is a continuous function such that p(x)µ(dx) defines
a probability measure on M.
In this article, we study the limit of the random operators (Ahn,n, n ∈ N):

Ahn,n(f)(x) :=
1

nhd+2
n

n∑
i=1

K

(
∥x−Xi∥2

hn

)
(f(Xi)− f(x)), x ∈ M (2.1)

where K : R+ → R+ is a function of bounded variation and (hn, n ∈ N) is a sequence of positive
real numbers converging to 0.
Such operators can be viewed as the infinitesimal generator of continuous time random walks
visiting the points (Xi)i∈[[1,n]], where [[1, n]] = {1, . . . n}. Such process jumps from its position

x to the new position Xi at a rate K(∥x − Xi∥2/hn)/(nhd+2
n ) that depends on the distance

between x and Xi. Notice that here, the Euclidean distance is used. When walking on the
manifold M, using the geodesic distance and considering the operator

Ãhn,n(f)(x) :=
1

nhd+2
n

n∑
i=1

K

(
ρ(x,Xi)

hn

)
(f(Xi)− f(x)), x ∈ M

could be also very natural. In fact, for smooth manifolds, the limits of the two operators Ahn,n

and Ãhn,n are the same, as is indicated by [51, Prop. 2]. In view of applications to manifold
learning, when M is unknown and when only the sample points Xi’s are available, using the
norm of the ambient space Rm can be justified.
The operator (2.1) can also be seen as a graph Laplacian for a weighted graph with vertices
being data points and their convergence has been studied extensively in machine learning liter-
ature to approximate the Laplace-Beltrami operator of M (see e.g. [108, 55, 83, 15, 16, 113]).
Nonetheless, most of these results are done for Gaussian kernel, i.e., K(a) = e−a

2
, or sufficiently

smooth kernels. These assumptions are too strong to include the case of ε-geometric graphs or
the ‘ true’ k-nearest neighbor graphs (abbreviated as kNN), and that correspond to choices of
indicators for the kernel K. In recent years, many works had been done to relax the regularity
of K and gave birth to many interesting papers (e.g. [25, 115]), as discussed below.

In the sequel, under a mild assumption on K (weaker than continuity, see Assumption 3 below)
and a condition on the rate of convergence of (hn), we show that almost surely, the sequence of
operators (Ahn,n) converges uniformly on M to the second order differential operator A on M
defined as

A(f) := c0

(
⟨∇M(p),∇M(f)⟩+ 1

2
p∆M(f)

)
, (2.2)

for all function f ∈ C3(M), where ∇M and ∆M are respectively the gradient operator and
Laplace-Beltrami operator of M (introduced in Section 2.3) and

c0 :=
1

d

∫
Rd

K (∥v∥2) ∥v∥22dv=
1

d
Sd−1

∫ ∞

0
K(a)ad+1da, (2.3)
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where Sd−1 denotes the volume of the unit sphere of Rd. Moreover, a convergence rate is also
deduced, as stated in our main Theorem below (Theorem 2.1.1) that we will present after having
enounced the assumptions needed on the kernel K:

Assumption 3. The kernel K : R+ → R+ is a measurable function with K(∞) = 0 and of
bounded variation H such that: ∫ ∞

0
ad+3 dH(a) <∞. (2.4)

Recall that the total variation H of a kernel K is defined for each nonnegative number a
as H(a) = sup

∑n
i=1 |K(ai) − K(ai−1)|, where the supremum ranges over all n ∈ N and all

subdivisions 0 = a0 < · · · < an = a of [0, a]. Assumption 3 is the key to avoid making
continuity hypotheses on the kernel K.

Theorem 2.1.1 (Main theorem). Suppose that the density of points p(x) on the compact smooth
manifold M is of class C2. Suppose that Assumptions 3 for the kernel K are satisfied and that:

lim
n→+∞

hn = 0, and lim
n→+∞

log h−1
n

nhd+2
n

= 0. (2.5)

Then, with probability 1, for all f ∈ C3(M),

sup
x∈M

|Ahn,n(f)(x)−A(f)(x)| = O

√ log h−1
n

nhd+2
n

+ hn

 . (2.6)

Notice that the window hn that optimizes the convergence rate in (2.6) is of order n−1/(d+4),
up to log factors, resulting in a convergence rate in n−1/(4+d). This corresponds to the optimal
convergence rate announced in [66].
An important point in the assumptions of Theorem 2.1.1 is that K is not necessarily continuous
nor with mass equal to 1. This can allow to tackle the cases of geometric or kNN graphs for
example.

This theorem extends the convergence given by Giné and Koltchinskii [55, Th 5.1]. They con-
sider the kernel K(a) = e−a

2
and control the convergence of the generators uniformly over a

class of functions f of class C3, uniformly bounded and with uniformly bounded derivatives up
to the third order. For such class of functions, the constants in the right hand side (RHS) of
(2.6) can be made independent of f and we recover a similar uniform bound.
The condition (2.5) results from a classical bias-variance trade-off that appears in a similar

way in the work of Giné and Koltchinskii [55]. Notice that the speed
√

log h−1
n /(nhd+2

n ) is also

obtained by these authors under the additional assumption that nhd+4
n / log h−1

n → 0. We do
not make this assumption here. When the additional assumption of Giné and Koltchinskii is
satisfied, our rate and their rate coincide as: h2n = o

(
log h−1

n /(nhd+2
n )

)
. Hein et al. [65, 66]

extended the results of Giné and Koltchinskii to other kernels K, but requesting in particular
that these kernels are twice continuously differentiable and with exponential decays (see e.g.
[65, Assumption 2] or [66, Assumption 20]). Singer [108], considering Gaussian kernels, upper
bounds the variance term in a different manner compared to Hein et al., improving their con-
vergence rate when p is the uniform distribution.
To our knowledge there are a few works where the consistency of graph Laplacians is proved with-
out continuity assumptions on the kernel K. Ting et al. [115] also worked under the bounded
variation assumption on K. Additionally, they had to assume that K is compactly supported.
In [25], Calder and Garcia-Trillos considered a non-increasing kernel with support on [0, 1] and
Lipschitz continuous on this interval. This choice allows them to consider K(a) = 1[0,1](a).
Calder and Garćıa Trillos established Gaussian concentration of Ahn,n(f)(x) and showed that
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the probability that |Ahn,n(f)(x)−Af(x)| exceeds some threshold δ is exponentially small, of
order exp(−Cδ2nhd+2

n ), when n → +∞. In this paper, thanks to the uniform convergence in
Theorem 2.1.1, we obtain a similar result with additional uniformity on the test functions f :

Corollary 2.1.2. Suppose that the density p on the smooth manifold M is of class C2, and
that Assumptions 3 and (2.5) are satisfied. Then there exists a constant C ′ > 0 (see (2.58)),

such that for all n and δ ∈
[
hn ∨

√
log h−1

n

nhd+2
n

, 1

]
, we have:

P

(
sup
f∈F

sup
x∈M

|Ahn,n(f)(x)−Af(x)| > C ′δ

)
⩽ exp(−nhd+2

n δ2), (2.7)

where F is the family of C3(M) functions bounded by 1 and with derivatives up to the third
order also bounded by 1.

The fact that the convergence in Theorem 2.1.1 is uniform has several other applications. For
example, it can be a step to study the spectral convergence for the graph Laplacian using the
Courant-Fisher minmax principle (see e.g. [25]). Interestingly, the uniform convergence of the
Laplacians is also used to study Gaussian free fields on manifolds [29].

The result of Theorem 2.1.1 can be extended to the convergence of kNN Laplacians in the
following way. Recall that for n, k ∈ N fixed, such that k ⩽ n, the kNN graph on the vertices
{X1, . . . Xn} is a graph for which the vertices have out-degree k. Each vertex has outgoing
edges to its k-nearest neighbor for the Euclidean distance (again, the geodesic distance could
be considered).
For x ∈ M, the distance between x and its k-nearest neighbor is defined as:

Rn,k(x) = inf
{
r ⩾ 0,

n∑
i=1

1∥x−Xi∥2⩽r ⩾ k
}
. (2.8)

The Laplacian of the kNN-graph is then, for x ∈ M,

AkNN
n (f)(x) :=

1

nRd+2
n,kn

(x)

n∑
i=1

1[0,1]

(
∥Xi − x∥2
Rn,kn(x)

)
(f(Xi)− f(x)). (2.9)

A major difficulty here is that the width of the moving window, Rn,kn(x) is random and de-
pends on x ∈ M, contrary to the previous hn. The above expression corresponds to the choice
of the kernel K(a) = 1[0,1](a). The case of kNN has been much discussed in the literature but
to our knowledge, there are few works where the consistency of kNN graph Laplacians have
been fully and rigorously considered, because: 1) of the non-regularity of the kernel K and 2)
of the fact that the kNN graph is not symmetric, more precisely, the vertex Xi is among the
k-nearest neighbors of a vertex Xj does not imply that Xj is among the k-nearest neighbors
of Xi. Ting et al. [115] discussed that if there is a kind of Taylor expansion with respect to x
of the window Rn,kn(x), one might prove a pointwise convergence for kNN graph Laplacian,
without convergence rate. In the present proof, we do not require such Taylor-like expansion.
Let us mention also the work of Calder and Garćıa Trillos [25] where the spectral convergence
is established. In other papers such as [28], (2.8) is considered for defining the window width
hn but the kernel K remains continuous.

We will prove the following limit theorem for the rescaled kNN Laplacian:

Theorem 2.1.3. Under Assumption 3, if the density p ∈ C2(M) is such that for all x ∈ M,

0 < pmin ⩽ p(x) ⩽ pmax, (2.10)
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and if

lim
n→+∞

kn
n

= 0, and lim
n→+∞

1

n

(
kn
n

)−1−2/d

log

(
kn
n

)
= 0, (2.11)

we have with probability 1,

sup
x∈M

∣∣∣AkNN
n (f)(x)−A(f)(x)

∣∣∣ = O

(√
log

(
n

kn

)
1√
kn

(
n

kn

)1/d

+

(
kn
n

)1/d
)
. (2.12)

This theorem is proved in Section 2.6. Notice that the important point in the assumption
(2.10) is the lower bound, since in our case of compact manifold, any continuous function p is
bounded. The condition (2.11) and the rate of convergence in (2.12) come from that fact that
the random distance Rn,kn(x) stays with large probability in an interval [κ−1hn, κhn] for some
κ > 1 independent of x and n, and for a sequence hn independent of x. This property is based
on a result of Cheng and Wu [28]. The proof of Theorem 2.1.3 follows the main steps presented
in the proof of Theorem 2.1.1 with some slight modifications.

Notice that the assumption (2.11) is satisfied for

kn = Cn1−α, with α ∈
(
0,

1

d+ 2

)
,

for instance. Optimizing the upper bound in (2.12) by varying α in the above choice gives:

kn = Cn
4

d+4 ,

yielding again a convergence rate of O
(√

log(n) n−1/(d+4)
)
.

Finally, we make the link between the convergence of the generators and the convergence of
the associated stochastic processes. As mentioned at the beginning of the article, the generator
Ahn,n can be seen as the infinitesimal generator of continuous time random walks (X(n))n⩾0

visiting the points (Xi)i∈[[1,n]]. Their trajectories are described by the following stochastic dif-
ferential equation (SDE):

X
(n)
t = X

(n)
0 +

∫ t

0

∫
N

∫
R+

1i⩽n1
θ⩽ 1

nhd+2
n

K

(
∥Xi−X

(n)
s− ∥2

hn

)(Xi −X(n)
s− ) Q(ds, di,dθ) (2.13)

with initial condition X
(n)
0 and where Q(ds, di,dθ) is a Poisson point measure on R+×N×R+,

independent of X
(n)
0 , and of intensity ds⊗n(di)⊗dθ, with ds and dθ Lebesgue measures on R+

and n(di) the counting measure onN (see e.g. [68] for an introduction on SDEs driven by Poisson
point measures). Consider T > 0 a fixed time. These random walks on [0, T ] are stochastic
processes with paths in the space D([0, T ],M) of càdlàg M-valued processes, embedded with
the Skorokhod topology (see [21, 70]), and converge to a diffusion on the manifold M with
generator A:

Theorem 2.1.4. Let T > 0 be fixed. Suppose that the density p on the smooth manifold M is
of class C2 and that Assumptions 3 and (2.5) are satisfied. Assume additionally that the initial

conditions (X
(n)
0 )n⩾0 converge in distribution to a probability measure ν on M. Then, the

sequence of random walks (X(n))n⩾0 converges in distribution, and in the space D([0, T ],M),
to the diffusion X that is the unique solution of the martingale problem associated with the
operator A with initial distribution ν.
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Similarly, we introduce the random walk associated to the kNN-generator as the solution of the
following SDE:

X
(n),kNN
t = X

(n),kNN
0

+

∫ t

0

∫
N

∫
R+

1i⩽n1θ⩽ 1

nRd+2
n,kn

(
X

(n),kNN
s−

)1∥Xi−X
(n),kNN
s− ∥2⩽Rd+2

n,kn

(
X

(n),kNN
s−

)(Xi−X(n)
s− ) Q(ds, di,dθ).

(2.14)

Theorem 2.1.5. Let T > 0 be fixed. Suppose that the density p on the smooth manifold M is
of class C2 and that Assumptions 3, (2.10) and (2.11) are satisfied. Assume additionally that

the initial conditions (X
(n),kNN
0 )n⩾0 converge in distribution to a probability measure ν on M.

Then, the sequence of random walks (X(n),kNN)n⩾0 converges in distribution, and in the space
D([0, T ],M), to the diffusion X that is the unique solution of the martingale problem associated
with the operator A with initial distribution ν.

The rest of the paper is organized as follows. In Section 2.2, we give the scheme of the proof.
The term |Ahn,n(f)(x) − A(f)(x)| is separated into a bias error, a variance error and a term
corresponding to the convergence of the kernel operator to a diffusion operator. In Section 2.3,
we provide some geometric backgrounds that will be useful for the study of the third term, which
is treated in Section 2.4. The two first statistical terms are considered in Section 2.5, which
will end the proof of Theorem 2.1.1. Corollary 2.1.2 is then proved at the end of this section.
In Section 2.6, we treat the convergence of kNN Laplacians: after recalling a concentration
result for Rn,kn(x), the proof amounts to considering a uniform convergence over a range of
window widths. The functional limit theorems, showing the convergence of the random walks
to diffusive limits are shown in Section 2.7.

Notation 2.1.6. In this paper diam(M), BRd(0, r) and Sd−1 denote respectively the diameter
of M, maxz,y∈M(∥z − y∥2), the ball of Rd centered at 0 with radius r and the volume of the
(d− 1)-unit sphere of Rd.

2.2 Outline of the proof for Theorem 2.1.1

First, we focus on the proof of Theorem 2.1.1. Recall that ρ(·, ·) denotes the geodesic distance
on M and that µ(dx) is the volume measure on M. We define two new operators Ah, Ãh for
each h > 0, x ∈ M, f ∈ C3(M):

Ah(f)(x) :=
1

hd+2

∫
M
K

(
∥x− y∥2

h

)
(f(y)− f(x))p(y)µ(dy) (2.15)

Ãh(f)(x) :=
1

hd+2

∫
M
K

(
ρ(x, y)

h

)
(f(y)− f(x))p(y)µ(dy). (2.16)

The difference between Ah and Ãh relies in the use of the extrinsic Euclidean distance ∥ · ∥2 for
Ah and of the intrinsic geodesic distance ρ(·, ·) for Ãh. Recall here that these two metrics are
comparable for close x and y:

Theorem 2.2.1 (Approximation inequality for Riemannian distance). [51, Prop. 2] There is
a constant c such that for x, y ∈ M, we have:

∥x− y∥2 ≤ ρ(x, y) ≤ ∥x− y∥2 + c∥x− y∥32.

□
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Let us sketch the proof of Theorem 2.1.1. By the classical triangular inequality,

|Ahn,n(f)(x)−A(f)(x)| ⩽
∣∣∣A(f)(x)− Ãhn(f)(x)

∣∣∣
+
∣∣∣Ãhn(f)(x)−Ahn(f)(x)

∣∣∣
+ |Ahn(f)(x)−Ahn,n(f)(x)| (2.17)

The first term in the RHS of (2.17) corresponds to the convergence of kernel-based generator
to a continuous diffusion generator on M. The following proposition is proved in Section 2.4.2:

Proposition 2.2.2 (Convergence of averaging kernel operators). Under Assumption 3, and if
p is of class C2. Then, for all f ∈ C3(M), we have:

sup
x∈M

∣∣∣Ãh(f)(x)−A(f)(x)
∣∣∣ = O(h).

This approximation is based on tools from differential geometry and exploits the assumed regu-
larities on K and p. Similar results have been obtained, in particular by [55, Th. 3.1] but with
continuous assumptions on K that exclude the kNN cases.

The second term in (2.17) corresponds to the approximation of the Euclidean distance by the
geodesic distance and is dealt with the following proposition, proved in Section 2.4.3:

Proposition 2.2.3. Under Assumption 3, and for a bounded measurable function p, we have,
for all f Lipschitz continuous on M:

sup
x∈M

∣∣∣Ah(f)(x)− Ãh(f)(x)
∣∣∣ = O(h).

For the last term in the RHS of (2.17), note that:

E [Ahn,nf(x)] = Ahnf(x),

because (Xi, i ∈ N) are i.i.d. This term corresponds to a statistical error. The following
proposition will be proved in Section 2.5 using Vapnik-Chervonenkis theory:

Proposition 2.2.4. Under Assumption 3 and for a bounded measurable function p, we have,
for all f ∈ C3(M),

sup
x∈M

|Ahn,nf(x)−Ahnf(x)| = O

√ log h−1
n

nhd+2
n

+hn

 , a.s.

It is worth noticing that there is an interplay between Euclidean and Riemannian distances. On
the one hand, the Vapnik-Chervonenkis theory is extensively studied for Euclidean distances,
not for Riemannian distance. On the other hand, approximations on manifolds naturally use
local coordinate representations for which the Riemannian distance is well adapted.

2.3 Some geometric backgrounds

2.3.1 Riemannian manifold

Let us recall some facts from differential geometry that will be useful. We refer the reader
to [27, 79] for a more rigorous introduction to Riemannian geometry. Let M be a smooth
d-dimensional submanifold of Rm.
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At each point x of M, there is a tangent vector space TxM that contains all the tangent vectors
of M at x. The tangent bundle of M is denoted by TM = ⊔x∈MTxM. For each x ∈ M, the
canonical scalar product ⟨·, ·⟩Rm of Rm induces a natural scalar product on TxM, denoted by
g(x). The application g, which associates each point x with a scalar product on TxM, is then
called the Riemannian metric on M induced by the ambient space Rm. For ξ, η ∈ TxM, we use
the classical notation ⟨ξ, η⟩g to denote the scalar product of ξ and η w.r.t to the scalar product
g(x).

Consider a coordinate chart Φ = (x1, . . . xd) : U → Rd on a neighborhood U of x. Denoting by{
∂
∂x1

∣∣
x
, ∂
∂x2

∣∣
x
, ..., ∂

∂xd

∣∣
x

}
the natural basis of TxM associated with the coordinates (x1, . . . xd).

Then, the scalar product g(x) is associated to a matrix (gij)i,j∈[[1,d]] in the sense that in this
coordinate chart, for ξ and η ∈ TxM,

⟨ξ, η⟩g =

d∑
i,j=1

gij(x)ξ
iηj , (2.18)

where (ξi), (ηj) are the coordinates of ξ and η in the above basis of TxM. Notice that, for each
i, j ∈ [[1, d]]

gij(x) :=

〈
∂

∂xi

∣∣∣∣
x

,
∂

∂xj

∣∣∣∣
x

〉
g

, (2.19)

and gij : U ⊂ M → R is smooth. For a real function f on M, we will denote f̂ its expression

in the local chart: f̂ = f ◦ Φ−1. Recall that the derivative ∂f
∂xj

is defined as:

∂f

∂xj
:=

∂f̂

∂xj
◦ Φ.

Also we denote

ĝij := gij ◦ Φ−1, (2.20)

which will be called the coordinate representation of the Riemannian metric in the local chart Φ.

Charts (from U ⊂ M → Rd) induce local parameterizations of the manifold (from Rd → U ⊂
M). Among all possible local coordinate systems of a neighborhood of x in M, there are normal
coordinate charts (see [79, p. 131-132] or the remark below for a definition). We denote by Ex
the Riemannian normal parameterization at x, i.e., E−1

x is the corresponding normal coordinate
chart.

Remark 2.3.1 (Construction of E−1
x ). For the sake of completeness, we briefly recall the con-

struction of [79]. Let U be an open subset of M. There exists a local orthonormal frame
(Ei)i∈[[1,d]] over U , see [79, Prop. 2.8, p. 14]. The tangent bundle TU can be identified with

U × Rd thanks to the smooth map:

F :
U × Rd → TU

(x, (v1, . . . vd)) 7→ v =
∑d

i=1 viEi|x.
(2.21)

So for each x ∈ U , F (x, ·) is an isometry between Rd and TxM.
Recall that by [79, Prop 5.19, p. 128], the exponential map exp(·) of M can be defined on a

non-empty open subset W of TM such that ∀x ∈ M,
−→
0 x ∈ W , where

−→
0 x is the zero element

of TxM. Then, the map exp ◦F : (x, v) 7→ Ex(v) := exp ◦F (x, (v1, . . . , vd)) is well-defined on
F−1(W ∩TU) and E−1

x is a Riemannian normal coordinate chart at x ∈ U , smooth with respect
to x.
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Let us state some properties of the normal coordinate charts.

Theorem 2.3.2 (Derivatives of Riemannian metrics in normal coordinate charts). [79, Prop.
5.24] For x ∈ M, let E−1

x : U ⊂ M → Rd be a normal coordinate chart at a point x such that
E−1
x (x) = 0 and let (ĝij ; 1 ≤ i, j ≤ d) be the coordinate representation of the Riemannian metric

of M in the local chart E−1
x . Then for all i, j,

ĝij(0) = δij , ĝ′ij(0) = 0, (2.22)

where δij is the Kronecker delta. Additionally, for all y ∈ U ,

ρ(x, y) = ∥E−1
x (y)∥2. (2.23)

Notation 2.3.3. For any function f : Rd → Rk, we denote by f ′ : Rd → Rk the linear map that
represents the first order derivative of f . Similarly, we denote respectively by f ′′ : Rd×Rd → Rk

and f ′′′ : Rd × Rd × Rd → Rk the bi-linear map and the tri-linear map that represent the second
order derivative and the third order derivative of f . Thus, the Taylor’s expansion of f up to
third order can be written as

f(x+ v) = f(x) + f ′(x)(v) +
1

2
f ′′(x)(v, v) +

1

6
f ′′′(x+ εv)(v, v, v),

for some ε ∈ (0, 1).

For the normal parameterizations Ex, we now state some uniform controls that are keys for our
computations in the sequel.

Theorem 2.3.4 (Existence of a ”good” family of parameterizations.). There exist constants
c1, c2 > 0 and a family (Ex, x ∈ M) of smooth local parameterizations of M which have the
same domain BRd(0, c1) such that for all x ∈ M,

i. E−1
x is a normal coordinate chart of M and Ex(0) = x.

ii. For v ∈ BRd(0, c1), we denote by (ĝxij(v); 1 ≤ i, j ≤ d) the coordinate representation of
the Riemannian metric g(Ex(v)) of M in the local parameterization Ex. Then for all
v ∈ BRd(0, c1): ∣∣∣√det ĝxij(v)− 1

∣∣∣ ≤ c2∥v∥22. (2.24)

iii. We have ∥Ex(v)− x∥2 ≤ ∥v∥2. In addition, for all v ∈ BRd(0, c1),

∥Ex(v)− x− E ′
x(0)(v)∥2 ≤ c2∥v∥22, (2.25)

and

∥Ex(v)− x− E ′
x(0)(v)−

1

2
E ′′
x (0)(v, v)∥2 ≤ c2∥v∥32, (2.26)

Proof for Theorem 2.3.4. Let U be an open domain of a local chart of M. Following Remark
2.3.1 and noticing that there is always an orthonormal frame over U , we can define a family of
normal parameterizations (Ex)x∈U .
First, we easily note that ∥Ex(v)− x∥2 ≤ ∥v∥2 thanks to Theorem 2.2.1 and (2.23).
Restricting U if necessary (by an open subset with compact closure in U), there exists constants
c1, c2 > 0 such that exp ◦F is well-defined on U ×BRd(0, c1) and that all v ∈ BRd(0, c1), (2.25)-
(2.26) hold by Taylor expansions of Ex. Equation (2.24) is a consequence of the smoothness of
Ex and Theorem 2.3.4.
Clearly, for each point y ∈ M, we can find an open neighborhood U of y and positive constants
c1 and c2 such as above. Hence, such open sets form an open covering of M. Therefore, by the
compactness of M, there exists a finite covering of M by such open sets U and therefore, the
constants c1 and c2 can be chosen uniformly for all Ex.
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2.3.2 Gradient operator, Laplace-Beltrami operator

Given a Riemannian manifold (M,g), the gradient operator ∇M and the Laplace-Beltrami
operator ∆M are, as suggested by their names, the generalizations for differential manifolds of
the gradient ∇Rm , the Laplacian ∆Rm in the Euclidean space Rm.
For a function f of class C1 on M, the gradient ∇Mf is expressed in local coordinates as

∇Mf(x) =
d∑

i,j=1

gij(x)
∂f

∂xi
(x)

∂

∂xj

∣∣∣∣
x

, (2.27)

where
(
gij
)
1⩽i,j,⩽d is the inverse matrix of (gij)1⩽i,j,⩽d. Since

∑d
j=1 g

ijgjk = δik, we note that

for f, h functions of class C1,

⟨∇M(f),∇M(h)⟩g =
d∑

i,j=1

gij
∂f

∂xi
∂h

∂xj
. (2.28)

The Laplace-Beltrami operator is defined by (see [67, Section 3.1])

∆Mf :=
d∑

i,j=1

1√
det(g)

∂

∂xi

(√
det(g)gij

∂f

∂xj

)
. (2.29)

When using normal coordinates, the expressions of the Laplacian and the gradient of a smooth
function f at a point x match their definitions in Rd.

Proposition 2.3.5. Suppose that Φ : U ⊂ M → Rd is a normal coordinate chart at a point x
in M such that Φ(x) = 0, then:

i. ⟨∇Mf(x),∇Mh(x)⟩g = ⟨∇Rd f̂(0),∇Rd ĥ(0)⟩.

ii. ∆Mf(x) = ∆Rd f̂(0),

Proof for Proposition 2.3.5. Recall that gij(x) = ĝij(0). By Theorem 2.3.2, we know that
ĝij(0) = δij , thus, ĝij(0) = δij and i. is a consequence of (2.28). For the equality ii., we
use (2.29). Since for the normal coordinates det ĝ(0) = 1 and since the derivatives of ĝij and
ĝij vanish at 0, we have the conclusion.

2.4 Some kernel-based approximations of A

The aim of this Section is to prove the estimates for the two error terms in the RHS of (2.17)
and prove the Propositions 2.2.2 and 2.2.3. Both error terms are linked with the geometry of the
problem and use the results presented in Section 2.3. The first one deals with the approximation
of the Laplace-Beltramy operator by a kernel estimator (see Section 2.4.2), while the second one
treats the differences between the use of the Euclidean norm of Rm and the use of the geodesic
distance (see Section 2.4.3).

2.4.1 Weighted moment estimates

We begin with an auxiliary estimation. The result is related to kernel smoothing and can also
be useful in density estimation on manifolds (see e.g. [18]).

Lemma 2.4.1. Under Assumption 3, uniformly in x ∈ M, when h converges to 0, we have:

1

hd+2

∫
M

1ρ(x,y)≥c1K

(
ρ(x, y)

h

)
µ(dy) = o(h), (2.30)

1

hd+2

∫
M

1ρ(x,y)≥c1K

(
∥x− y∥2

h

)
µ(dy) = o(h), (2.31)



2.4. SOME KERNEL-BASED APPROXIMATIONS OF A 61

and there is a generic constant c such that for all point x ∈ M and positive number h > 0, we
have:

1

hd+2

∫
M
K

(
ρ(x, y)

h

)
∥x− y∥32µ(dy) ≤ ch, (2.32)

1

hd+2

∫
M
K

(
ρ(x, y)

h

)
∥x− y∥22µ(dy) ≤ c, (2.33)

1

hd+2

∫
M
K

(
∥x− y∥2

h

)
∥x− y∥32µ(dy) ≤ ch, (2.34)

1

hd+2

∫
M
K

(
∥x− y∥2

h

)
∥x− y∥22µ(dy) ≤ c. (2.35)

Proof of Lemma 2.4.1. Using Lemma 2.9.5, we have:∫
M

1ρ(x,y)≥c1K

(
ρ(x, y)

h

)
µ(dy) ≤ µ(M) sup

r≥c1
K
( r
h

)
≤ µ(M)

[
H(∞)−H

(c1
h

)]
= µ(M)

∫
(c1/h,∞)

dH(a)

≤ hd+3µ(M)

cd+3
1

∫
(c1/h,∞)

ad+3dH(a). (2.36)

Thanks to the boundedness of
∫∞
0 ad+3dH(a), we obtain (2.30). Then, as a consequence of

(2.30), by the compactness of M, we easily observe that uniformly in x ∈ M, when h converges
to 0,

1

hd+2

∫
M

1ρ(x,y)≥c1K

(
ρ(x, y)

h

)
∥x− y∥32 µ(dy) = o(h).

So, to prove Inequality (2.32), it is left to prove that uniformly in x, when h converges to 0,

I :=
1

hd+3

∫
M

1ρ(x,y)<c1K

(
ρ(x, y)

h

)
∥x− y∥32µ(dy) = O(1). (2.37)

Recall that in Theorem 2.3.4, we showed that for each point x ∈ M, there is a local smooth
parameterization Ex of M that has many nice properties, especially ρ(x, y) = ∥E−1

x (y)∥2 for all
y within an appropriate neighborhood of x by (2.23). Thus, the term I in the left hand side
(LHS) of (2.37) can be re-written in its coordinate representation under the parameterization
Ex by using the change of variables v = E−1

x (y):

I =
1

hd+3

∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥x− Ex(v)∥32

√
detĝxij(v)dv.

Then, using Theorem 2.2.1 and Theorem 2.3.4 (ii and iii),

I ≤ c2
hd+3

∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥32(1 + c2∥v∥22)dv

≤ c2
hd+3

∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥32(1 + c2c

2
1)dv

≤ c2
hd+3

∫
Rd

K

(
∥v∥2
h

)
∥v∥32(1 + c2c

2
1)dv.

= c2(1 + c2c
2
1)

∫
Rd

K(∥v∥2)∥v∥32dv, (2.38)
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Using the spherical coordinate system when d ⩾ 2:

I ⩽ c2(1 + c2c
2
1)

[∫ ∞

0
K(a)a3 × ad−1da

]
×

×

[∫
[0,2π]×[0,π]d−2

sind−2(θ1) sin
d−3(θ2) · · · sin(θd−2)dθ

]

= c2(1 + c2c
2
1) Sd−1

[∫ ∞

0
K(a)ad+2da

]
.

For d = 1, we use that
∫

R1 K(|v|)|v|3dv = 2×
∫∞
0 K(a)a1+2da.

Hence, by Lemma 2.9.5 in the Appendix, and Fubini’s theorem, we have:

I ≤ c2(1 + c2c
2
1)Sd−1

∫ ∞

0
(H(∞)−H(a)) ad+2da

= c2(1 + c2c
2
1)(d+ 3)−1Sd−1

∫
[0,∞]

bd+3dH(b) <∞. (2.39)

Therefore, Inequality (2.32) is proved. The proof of Inequality (2.33) is similar.
For Inequalities (2.31), (2.34) and (2.35), we observe that they are indeed consequences of (2.30),
(2.32) and (2.33). Consider for example (2.31), using again Lemma 2.9.5 and Theorem 2.2.1:

1

hd+2

∫
M

1ρ(x,y)⩾c1K

(
∥x− y∥2

h

)
µ(dy)

≤ 1

hd+2

∫
M

1ρ(x,y)⩾c1

[
H(∞)−H

(
ρ(x, y)

h(1 + c3∥x− y∥22)

)]
µ(dy)

≤ 1

hd+2

∫
M

1ρ(x,y)⩾c1

[
H(∞)−H

(
ρ(x, y)

h(1 + c3diam(M)2)

)]
µ(dy)

=
1

hd+2

∫
M

1ρ(x,y)⩾c1K̃

(
ρ(x, y)

h

)
µ(dy), (2.40)

for K̃(a) := H(∞)−H
(

a
1+c3diam(M)2

)
and where the second inequality uses that H is a non-

decreasing function. So Inequality (2.31) corresponds to Inequality 2.30 where K is replaced
with K̃. Clearly, the function K̃ is of bounded variation and satisfies Assumption 3, which
conclude the proof for (2.31). The arguments are similar for (2.34) and (2.35).

2.4.2 Proof of Proposition 2.2.2

In this section, we prove Proposition 2.2.2, dealing with the approximation of the Laplace
Beltrami operator by a kernel operator.
In the course of the proof, some quantities involving gradients and Laplacian will appear repet-
itively. The next lemma deal will be useful to deal with these expressions and its proof is
postponed to Appendix 2.9.3:

Lemma 2.4.2. (Some auxiliary calculations) Suppose that f, h : Rm → R, k : Rd → Rm are
C2-continuous functions, that k(0) = x and suppose that G : R+ → R is a locally bounded
measurable function. Then, for all c > 0:∫

BRd (0,c)
G(∥v∥2)⟨∇Rmf(x), k′(0)(v)⟩⟨∇Rmh(x), k′(0)(v)⟩ dv

= ⟨∇Rd(f ◦ k)(0),∇Rd(h ◦ k)(0)⟩

(
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv

)
, (2.41)
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and∫
BRd (0,c)

G (∥v∥2)
[〈

∇Rmf(x), k′(0)(v) +
1

2
k′′(0)(v, v)

〉
+

1

2
f ′′(x)(k′(0)(v), k′(0)(v))

]
dv

=
1

2
∆Rd(f ◦ k)(0)

(
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv

)
. (2.42)

Let us now prove Proposition 2.2.2. As M is compact, M is a properly embedded submanifold
of Rm (see [78, p.98]). Hence, any function of class C3 on M can be extended to a function
of class C3 on Rm, see [78, Lemma 5.34]. So without loss of generality, assume f and p are
respectively C3 and C2 functions on Rm with compact supports.

Recall that we want to study
∣∣∣Ãh(f)−A(f)

∣∣∣ where A and Ãh have been respectively defined

in (2.2) and (2.16). So, introducing the constant c1 > 0 of Lemma 2.4.1 and noticing that f
and p are uniformly bounded on the compact M, to prove Proposition 2.2.2, we only have to
prove that uniformly in x ∈ M,∣∣∣∣A(f)(x)− 1

hd+2

∫
M

1ρ(y,x)<c1K

(
ρ(x, y)

h

)
(f(y)− f(x))p(y)µ(dy)

∣∣∣∣ = O(h).

Besides, thanks to the compactness of M and to the regularity of f and p, Taylor’s expansion
implies that there is a constant c4 such that for all x, y ∈ M:∣∣∣∣∣(f(y)− f(x))p(y)

−
(
⟨∇Rmf(x), y − x⟩+ 1

2
f ′′(x)(y − x, y − x)

)
p(x)

− ⟨∇Rmf(x), y − x⟩⟨∇Rmp(x), y − x⟩

∣∣∣∣∣ ≤ c4∥x− y∥32. (2.43)

Hence, by Inequality (2.32), it is sufficient to prove that uniformly in x,

J1 :=
1

hd+2

∫
M

1ρ(y,x)<c1K

(
ρ(x, y)

h

)
⟨∇Rmf(x), y − x⟩⟨∇Rmp(x), y − x⟩µ(dy)

=c0⟨∇M(f)(x),∇M(p)(x)⟩g +O(h). (2.44)

and

J2 :=
1

hd+2

∫
M

1ρ(y,x)<c1K

(
ρ(x, y)

h

)[
⟨∇Rmf(x), y − x⟩+ 1

2
f ′′(x)(y − x, y − x)

]
µ(dy)

=
1

2
c0∆M(f)(x) +O(h). (2.45)

The proof is similar than the study of I given by (2.37) in the proof of Lemma 2.4.1. We
re-write the considered integrals in coordinate representations. Using the change of variables
v = E−1

x (y), we have

J1 =
1

hd+2

∫
BRd (0,c1)

K

(
∥v∥2
h

)
⟨∇Rmf(x), Ex(v) − x⟩⟨∇Rmp(x), Ex(v) − x⟩

√
detĝxij(v)dv.
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By properties ii. and iii. in Theorem 2.3.4 we have∣∣∣∣∣J1−
∫
BRd (0,c1)

K

(
∥v∥2
h

)
⟨∇Rmf(x), Ex(v)− x⟩⟨∇Rmp(x), Ex(v)− x⟩dv

∣∣∣∣∣
≤ c2
hd+2

∥∇Rmf(x)∥2∥∇Rmp(x)∥2
∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥22.∥Ex(v)− x∥22dv

≤ c32
hd+2

∥∇Rmf(x)∥2∥∇Rmp(x)∥2
∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥42dv

≤ c32c1
hd+2

∥∇Rmf(x)∥2∥∇Rmp(x)∥2
∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥32dv.

As in the proof of Lemma 2.4.1, we deduce that the latter is bounded by O(h).
Besides, using again Property iii. in Theorem 2.3.4, we have that uniformly in x,

∣∣∣ 1

hd+2

∫
BRd (0,c1)

K

(
∥v∥2
h

)
⟨∇Rmf(x), Ex(v)− x⟩×

⟨∇Rmp(x), Ex(v)− x⟩dv − J11

∣∣∣ = O(h) (2.46)

with

J11 :=
1

hd+2

∫
BRd (0,c1)

K

(
∥v∥2
h

)
⟨∇Rmf(x), E ′

x(0)(v)⟩⟨∇Rmp(x), E ′
x(0)(v)⟩dv.

Let us now compare J11 to the first term of the generator A. Using Equation (2.41) of

Lemma 2.4.2, with G(||v||2) = K
(
||v||2
h

)
, k = Ex, and Proposition 2.3.5, we have:

J11 =
1

hd+2

(
1

d

∫
BRd (0,c1)

K

(
∥v∥2
h

)
∥v∥22dv

)
⟨∇Rd(f ◦ Ex)(0),∇Rd(p ◦ Ex)(0)⟩

=

(
1

d

∫
BRd (0,c1/h)

K (∥v∥2) ∥v∥22dv

)
⟨∇Mf(x),∇Mp(x)⟩g

=

(
1

d

∫
Rd

K (∥v∥2) ∥v∥22dv
)
⟨∇Mf(x),∇Mp(x)⟩g + o(h),

where the last estimation is uniform in x ∈ M and comes from the second estimation in (2.73)
in Lemma 2.9.5. Thus, we have proved Equation (2.44) for J1.
The proof for J2, given by (2.45), is similar to what we have done for J1. For identifying the
Laplace-Beltrami operator in the last step of the proof, we use Equation (2.42) of Lemma 2.4.2
and the second point of Proposition 2.3.5. Therefore, we have proved Proposition 2.2.2. □

2.4.3 Proof of Proposition 2.2.3

Let us now prove Proposition 2.2.3. This proposition deals with the difference between the
geodesic distance on M and the Euclidean norm of Rm.

By Inequalities (2.30) and (2.31) of Lemma 2.4.1, we know that uniformly in x, when h converges
to 0, ∫

M

(
K

(
∥x− y∥2

h

)
+K

(
ρ(x− y)

h

))
1ρ(x,y)≥c1µ(dy) = o(hd+3).
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Thus, by regularity of f , boundedness of p and compactness of M, uniformly in x, when h
converges to 0,∫

M

(
K

(
∥x− y∥2

h

)
+K

(
ρ(x− y)

h

))
|f(x)− f(y)|p(y)1ρ(x,y)≥c1µ(dy) = o(hd+3).

So, we only have to prove that uniformly in x,∫
M

∣∣∣∣K (ρ(x, y)h

)
−K

(
∥x− y∥2

h

)∣∣∣∣ |f(x)− f(y)|p(y)1ρ(x,y)<c1µ(dy) = O(hd+3),

Or equivalently, using the change of variables v = E−1
x (y) and ρ(x, y) = ∥E−1

x (y)∥2 by (2.23),∫
BRd(0,c1)

∣∣∣∣K (∥v∥2
h

)
−K

(
∥Ex(v)− x∥2

h

)∣∣∣∣ |f ◦ Ex(v)− f(x)| p ◦ Ex(v)
√

detĝxij(v)dv

= O(hd+3).

Besides, by regularity of f , boundedness of p and compactness of M, there is a constant c
such that |f(x)− f(y)| ≤ c∥x− y∥2. Moreover, by Property ii. of Theorem 2.3.4, the function
v 7→ detĝxij(v) is bounded on BRd(0,c1). Hence, it is sufficient to show that uniformly in x,

I :=

∫
BRd(0,c1)

∣∣∣∣K (∥v∥2
h

)
−K

(
∥Ex(v)− x∥2

h

)∣∣∣∣ ∥Ex(v)− x∥2dv = O(hd+3).

Recall that ∥Ex(v) − x∥2 ⩽ ∥v∥2 (by Theorem refTheorem: Existence of a ”good” family of
normal coordinate systemsA). By Inequation (2.72) in Lemma 2.9.5, we have

I ⩽
∫
BRd(0,c1)

(∫
(

∥Ex(v)−x∥2
h

,
∥v∥2
h

] dH(a)

)
∥v∥2dv

=

∫
BRd(0,c1)

(∫
R+

1∥Ex(v)−x∥2<ah≤∥v∥2dH(a)

)
∥v∥2dv.

Also by Theorem 2.2.1, there exists a constant c3 such that ∀x, y ∈ M, ρ(x, y) ⩽ c3∥x− y∥32 +
∥x− y∥. The polynomial function z 7→ z+c3z

3 is an increasing bijective function and we denote
by φ its inverse. Thus, for all x, y ∈ M, φ(ρ(x, y)) ≤ ∥x− y∥2.
Consequently, introducing φ(ρ(x, Ex(v))) = φ(∥v∥2), we deduce

I ≤
∫
BRd(0,c1)

(∫
R+

1φ(∥v∥2)<ah≤∥v∥2dH(a)

)
∥v∥2dv

=

∫
R+

(∫
BRd(0,c1)

∥v∥2.1ah≤∥v∥2<ah+c3(ah)3dv

)
dH(a),

by Fubini’s Theorem. Finally, using the spherical coordinate system as in the proof of Lemma 2.4.1,
we see that:

I ⩽Sd−1

∫
R+

(∫ c1

0
rd1ah≤r<ah+c3(ah)3dr

)
dH(a)

≤Sd−1

∫
R+

(
1ah≤c1 ×

∫ ah+c3(ah)3

ah
rddr

)
dH(a)

≤Sd−1

∫
R+

(
1ah≤c1 × c3(ah)

3
[
ah+ c3(ah)

3
]d)

dH(a)

≤Sd−1

∫
R+

c3(ah)
d+3(1 + c3c

2
1)
ddH(a)

=Sd−1c3(1 + c3c
2
1)
dhd+3

∫
R+

ad+3dH(a).
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This ends the proof of Proposition 2.2.3. □

2.5 Approximations by random operators

In this section, we study the statistical error and prove Proposition 2.2.4.

Notation 2.5.1. For a C3-function f : M → Rk, we denote respectively by ∥f ′∥∞, ∥f ′′∥∞, ∥f ′′′∥∞
the standard norm of multi-linear maps, i.e.

∥f ′′∥∞ = sup
x∈M,(v,w)∈(Rm)2

∥v∥2≤1,∥w∥2≤1

∣∣f ′′(x)(v, w)∣∣.
Recall that for α ∈ [[1,m]] and x ∈ Rm, we denote by xα the α-th coordinate of x.

Let us consider the following collection F of C3-functions

F := {f ∈ C3(M) : ∥f∥∞ ≤ 1, ∥f ′∥∞ ≤ 1, ∥f ′′∥∞ ≤ 1, ∥f ′′′∥∞ ≤ 1}. (2.47)

Let X be a random variable with distribution p(x)µ(dx) on M. We introduce the following
sequence of random variables (Zn, n ∈ N):

Zn := sup
f∈F

sup
x∈M

∣∣∣∣Ahn,n(f)(x)− E[Ahn,n(f)(x)]

∣∣∣∣
=

1

nhd+2
n

sup
f∈F

sup
x∈M

∣∣∣∣∣
n∑
i=1

(
K

(
∥Xi − x∥2

hn

)
(f(Xi)− f(x))

−E

[
K

(
∥X − x∥2

hn

)
(f(X)− f(x))

])∣∣∣∣ .
Recall that for all function f and point x, E[Ahn,n(f)(x)] = Ahn(f)(x). We want to prove that
with probability 1,

Zn = O

√ log h−1
n

nhd+2
n

+ hn

 . (2.48)

The general idea to prove this estimation is that instead of proving directly this convergence
speed for (Zn), we show that its expectation also has this speed of convergence, that is:

lim sup
n→∞

√ log h−1
n

nhd+2
n

+ hn

−1

E(Zn)

 <∞, (2.49)

then (2.48) will follow easily from Talagrand’s inequality (see Corollary 2.9.1 in Appendix) and
Borel-Cantelli’s theorem, as explained in Section 2.5.4. The detailed plan for the proof of (2.48)
is as follows:

Step I: Use Taylor’s expansion to divide Zn into many simpler terms each.

Step II: Use Vapnik-Chernonenkis theory and Theorem 2.5.3 to bound the expectation of each
terms.

Step III: Use Talagrand’s inequality to conclude.

After using Talagrand’s inequality, we have a non-asymptotic estimation of

P

(
sup
f∈F

sup
x∈M

∣∣∣∣Ahn,n(f)(x)− E[Ahn,n(f)(x)]

∣∣∣∣ ≥ δ

)
for some suitable constant δ and will be able to prove the Corollary 2.1.2 at the end of this
section. This term is of interest of many papers [83, 65, 25].
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2.5.1 About the Vapnik-Chernonenkis theory

Before starting the proof, we first recall here the main definitions and an important result of
the Vapnik-Chernonenkis theory for the Borelian space (Rm,B(Rm)) we will need. Other useful
results are given in Appendix 2.9.1. For more details on the Vapnik-Chernonenkis theory, we
refer the reader to [35, 56, 92]. In this section, we will recall upper-bounds that exist for

sup
f∈F

E

[∣∣∣∣∣
n∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣
]

when the functions f range over certain VC classes of functions that are defined below.

Let (T, d) be a pseudo-metric space. Let ε > 0 and N ∈ N∪{+∞}. A set of points {x1, . . . , xN}
in T is an ε-cover of T if for any x ∈ T , there exists i ∈ [1, N ] such that d(x, xi) ≤ ε. Then, the
ε-covering number of T is defined as:

N(ε, T, d) := inf{N ∈ N ∪ {+∞} : there are N points in T

such that they form an ε-cover of (T, d)}.

For a collection of real-valued measurable functions F on Rm, a real measurable function F
defined on Rm is called envelope of F if for any x ∈ R,

sup
f∈F

|f(x)| ≤ F (x).

This allows us to define VC classes of functions (see Definition 3.6.10 in [56]). Recall that for a
probability measure Q on the measurable space (Rm,B(Rm)), the L2(Q)-distance given by

(f, g) 7→
(∫

|f(x)− g(x)|2Q(dx)

)1/2

defines a pseudo-metric on the collection of all bounded real measurable functions on Rm.

Definition 2.5.2 (VC class of functions, ). A class of measurable functions F is of VC type
with respect to a measurable envelope F of F if there exist finite constants A, v such that for all
probability measures Q and ε ∈ (0, 1)

N(ε∥F∥L2 ,F , L2(Q)) ≤ (A/ε)v.

We will denote:
N(ε,F) := sup

Q
N(ε,F , L2(Q)).

We now present a version of the useful inequality (2.5) of Giné and Guillou in [54] that gives a
bound for the expected concentration rate. For a class of function F , let us define for any real
valued function φ : F → R,

∥φ(f)∥F = sup
f∈F

|φ(f)|.

Theorem 2.5.3. (see [54, Proposition 2.1 and Inequality (2.5)]) Consider n i.i.d random vari-
ables X1, . . . , Xn with values in (Rm,B(Rm)).
Let F be a measurable uniformly bounded VC-type class of functions on (Rm,B(Rm)). We
introduce two positive real number σ2 and U , such that

σ2 ≥ sup
f∈F

Var
(
f(X1)

)
, U ≥ sup

f∈F
∥f∥∞ and 0 < σ ≤ 2U.

Then there exists a constant R depending only on the VC-parameters A, v of F and on U , such
that:

E

[∥∥∥∥∥
n∑
i=1

(f(Xi)− E[f(Xi)])

∥∥∥∥∥
F

]
≤ R

(√
nσ
√
|log σ|+ |log σ|

)
.
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Notice that there exists also a formulation of the previous result in term of deviation probability
(see e.g. [86, Theorem 3]), that would lead to results similar to the ones established in [25].

2.5.2 Step I: decomposition of Zn

We first upper bound the quantity Zn with a sum of simpler terms.

Lemma 2.5.4. For any function f ∈ F , there is a constant c > 0 such that for all n ⩾ 1,

nhd+2
n Zn ≤

m∑
α=1

Y α
n +

m∑
α,β=1

Y α,β
n + Y (3)

n + 2nchd+3
n , (2.50)

where

Y α
n := sup

x∈M

∣∣∣∣∣
n∑
i=1

[
K

(
∥Xi − x∥2

hn

)
(Xα

i − xαi )− E

(
K

(
∥X − x∥2

hn

)
(Xα − xα)

)]∣∣∣∣∣
Y α,β
n := sup

x∈M

∣∣∣∣∣
n∑
i=1

[
K

(
∥Xi − x∥2

hn

)
(Xα

i − xα)(Xβ
i − xβ)−

E

(
K

(
∥X − x∥2

hn

)
(Xα − xα)(Xβ − xβ)

)]∣∣∣∣
Y (3)
n := sup

x∈M

∣∣∣∣∣
n∑
i=1

K

(
∥Xi − x∥2

hn

)
∥Xi − x∥32 − E

[
K

(
∥X − x∥2

hn

)
∥X − x∥32

]∣∣∣∣∣ .
Proof. Since for any f ∈ F , the differentials up to third order have operator norms bounded by
1, then, by the Taylor’s expansion theorem, for any (x, y) ∈ (Rm)2, we have

f(y)− f(x) = f ′(x)(y − x) +
1

2
f ′′(x)(y − x, y − x) + τf (y;x)

where τf is some function satisfying

sup
f∈F

|τf (y, x)| ≤ ∥f ′′′∥∞∥x− y∥32 = ∥x− y∥32. (2.51)

Thus, using the notation of the lemma, we deduce

nhd+2
n Zn ≤

m∑
α=1

Y α
n +

m∑
α=1,β=1

Y α,β
n + Y r

n ,

with

Y r
n := sup

f∈F
x∈M

∣∣∣∣∣
n∑
i=1

(
K

(
∥Xi − x∥2

hn

)
τf (Xi, x)− E

[
K

(
∥X − x∥2

hn

)
τf (X,x)

])∣∣∣∣∣ .
Using (2.51), we now control Y r

n by Y
(3)
n , as follows

Y r
n≤ sup

x∈M

∣∣∣∣∣
n∑
i=1

K

(
∥Xi − x∥2

hn

)
∥Xi − x∥32

∣∣∣∣∣+ n sup
x∈M

E

[
K

(
∥X − x∥2

hn

)
∥X − x∥32

]
≤ Y (3)

n + 2n sup
x∈M

E

[
K

(
∥X − x∥2

hn

)
∥X − x∥32

]
.

Since the function p is bounded on the compact M, using Inequation (2.34) of Lemma 2.4.1,

we deduce that Y r
n ⩽ Y

(3)
n + 2nchd+3

n , which conclude the proof.
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2.5.3 Step II: Application of the Vapnik-Chervonenkis theory

2.5.3.1 Control the first order terms E[Y α
n ]

Let α ∈ [[1,m]] be fixed. Given the kernel K, to bound the first order term Y α
n , we introduce

three families of real functions on M :

G := {φh,y,z : y, z ∈ M, h > 0} , G1 := {ψh,y : y ∈ M, h > 0}
and G2 := {ζy(x) : y ∈ M},

with
φh,y,z : x 7−→ K

(
∥x−y∥2

h

)
(xα − zα)

ψh,y : x 7−→ K
(
∥x−y∥2

h

)
ζy : x 7−→ xα − yα.

Since K is of bounded variation, by [92, Lemma 22], G1 is VC-type w.r.t a constant envelope.
Since M is a compact manifold, by Lemma 2.9.4, G2 is VC-type wrt to a constant envelope.
Thus, using Lemma 2.9.3, we deduce that G is a VC-type class of functions because G =
G1 · G2. So, by Definition 2.5.2, there exist real values A ≥ 6, v ≥ 1 depending only on the
VC-characteristics of G1 and G2 such that, for all ε ∈ (0, 1),

N(ε,G) ≤
(
A

2ε

)v
.

Now, let us consider the following sequence of families of real functions on M:

Hn = {φn,y : y ∈ M} , with φn,y : x 7−→ K

(
∥x− y∥2

hn

)
(xα − yα).

Proposition 2.5.5. Let (Xi)i⩾1 be a sample of i.i.d. random variables with distribution p(x)µ(dx)
on the compact manifold M and X a random variable with the same distribution. We assume
that p is bounded on M.
Then, if the kernel K satisfies Assumption 3 and the sequence (hn)n⩾0 satisfies Assumption
(2.5), we have

1

nhd+2
n

E

∥∥∥∥∥
n∑
i=1

(f(Xi)− E[f(X)])

∥∥∥∥∥
Hn

 = O

√ log h−1
n

nhd+2
n

 . (2.52)

Proof. Since Hn ⊂ G, by Lemma 2.9.2, for all n, we have N(ε,Hn) ≤
(
A
ε

)v
. Hence, by theorem

2.5.3, there exists a constant R depending only on A, v and U such that:

E

∥∥∥∥∥
n∑
i=1

f(Xi)− E(f(X))

∥∥∥∥∥
Hn

 ≤ R
(√

nσ
√
|log σ| + |log σ|

)
.

where U is a constant such that U ≥ supf∈Hn
∥f∥∞, and σ is a constant such that 4U2 ≥ σ2 ≥

supf∈Hn
E[f2(X)].

Since Hn ⊂ G, we can choose U to be the constant envelope of G (thus, independent of n).
Besides, we see that:

sup
f∈Hn

E
[
f2(X)

]
≤ ∥K∥∞ sup

x∈M

∫
M
K

(
∥x− y∥
hn

)
(xα − yα)2p(y)µ(dy).

By Inequation 2.33 of Lemma 2.4.1, we deduce that, there is c > 0 such that

sup
f∈Hn

E
[
f2(X)

]
≤∥K∥∞∥p∥∞µ(M)chd+2

n , (2.53)
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which goes to 0 when n → +∞. Choose σ2 := σ2n = ∥K∥∞∥p∥∞µ(M)chd+2
n . For n large

enough, σn ≤ 2U . Hence, using Assumption (2.5) on the sequence (hn)n⩾1, we deduce

1

nhd+2
n

E

∥∥∥∥∥
n∑
i=1

f(Xi)− E[f(X)]

∥∥∥∥∥
Hn

 = O

√ log h−1
n

nhd+2
n

+
log h−1

n

nhd+2
n


= O

√ log h−1
n

nhd+2
n

 .

This concludes the proof.

The conclusion of the above proposition means that:

1

nhd+2
n

E[Y α
n ] = O

√ log h−1
n

nhd+2
n

 .

2.5.3.2 Control the second order terms E
[
Y α,β
n

]
The way to bound the second order term Y α,β

n , for α, β ∈ [[1,m]], is similar to the previous step,
but instead of considering Hn, we consider the following VC-type family of functions:

In :=

{
ξn,y,z : x 7→ K

(
∥x− y∥
hn

)
(xα − yα)(xβ − qβ) : y ∈ M, z ∈ M,

}
.

We notice that, for any r.v. X,

E

[
sup
g∈In

∣∣g2(X)
∣∣] ⩽ diam(M)2E

[
sup
f∈Hn

∣∣f2(X)
∣∣].

Using (2.53), we deduce supg∈In E[g2(X)] = O(hd+2
n ), and

1

nhd+2
n

E sup
g∈In

∣∣∣∣∣
n∑
i=1

(g(Xi)− E[g(Xi)])

∣∣∣∣∣ = O

√ log h−1
n

nhd+2
n

 .

Therefore, we conclude that:

1

nhd+2
n

E[Y α,β
n ] = O

√ log h−1
n

nhd+2
n

 .

2.5.3.3 Control the third order terms E
[
Y

(3)
n

]
This step is essentially the same as the two previous steps, except that the considered family of
functions is a little bit different, which is:

Kn :=

{
x 7→ K

(
∥x− y∥
hn

)
∥x− y∥3 : y ∈ M

}
.

With the same arguments as before, we obtain:

1

nhd+2
n

E
[
Y (3)
n

]
= O

√ log h−1
n

nhd+2
n

 .

Now, thanks to Step I, Step II and Lemma 2.5.4, we have shown that:

E[Zn] = O

√ log h−1
n

nhd+2
n

+hn

 . (2.54)
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2.5.4 Step III: Conclusion

Recall that the set of function F is defined by (2.47). Since p is bounded on M, by (2.35) of
Lemma 2.4.1, there exists c > 0 such that ∀f ∈ F ,∀x ∈ M

E

[
K

(
∥X − x∥

hn

)2

(f(X)− f(x))2

]

≤ ∥K∥∞ E

[
K

(
∥X − x∥

hn

)
∥X − x∥2

]
≤ ∥K∥∞chd+2

n .

In other words,

sup
f∈F

sup
x∈M

E

[
K

(
∥X − x∥

hn

)2

(f(X)− f(x))2

]
≤ ∥K∥∞chd+2

n .

Thus by choosing σ := σn =
√

∥K∥∞chd+2
n , and using Massart version of Talagrand inequality

(c.f. Corollary 2.9.1) with the functions of the form y 7→ K
(
∥y−x∥2
hn

)
(f(y)− f(x)), for all n

sufficiently large and any positive number tn > 0, with probability at least 1− e−tn ,

sup
f∈F

sup
y∈M

nhd+2
n |Ahn,n(f)(x)− E[Ahn,n(f)(x)]| ≤ 9

(
nhd+2

n E[Zn] + σn
√
ntn + btn

)
, (2.55)

where, in this case, the constant envelope b is equal to

b := ∥K∥∞diamM.

Choose tn = 2 log n, by Borel-Cantelli’s lemma, with probability 1

sup
f∈F

sup
x∈M

∣∣∣∣Ahn,n(f)(x)− E[Ahn,n(f)(x)]

∣∣∣∣ = O

√ log h−1
n

nhd+2
n

+hn+

√
log n

nhd+2
n

 .

Besides, under Assumption (2.5) on the sequence (hn)n⩾1, lim
n→+∞

nhd+2
n = +∞, hence log h−1

n =

O(log n). Thus with probability 1,

sup
f∈F

sup
x∈M

∣∣∣∣Ahn,n(f)(x)− E[Ahn,n(f)(x)]

∣∣∣∣ = O

√ log h−1
n

nhd+2
n

+hn

 .

This ends the proof of Proposition 2.2.4. Hence, Theorem 2.1.1 is proved.

2.5.5 Proof of Corollary 2.1.2

Using the results of the above sections, we can now prove Corollary 2.1.2. First, we see that
by the proofs of Propositions 2.2.2, 2.2.3 and (2.54), there is a constant C > 0 such that for all
h > 0, n ∈ N :

sup
f∈F

sup
x∈M

|E[Ah,n(f)(x)]−A(f)(x)| ≤ Ch, (2.56)

and

E[Zn] ≤ C

√ log h−1
n

nhd+2
n

+ hn

 . (2.57)
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Then by choosing tn := δ2nhd+2
n in (2.55) with δ ∈ [hn ∨

√
log h−1

n

nhd+2
n

, 1], we know that with

probability at least 1− e−δ
2nhd+2

n ,

sup
f∈F

sup
y∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]| ≤
9
(
nhd+2

n E[Zn] + σn
√
ntn + btn

)
nhd+2

n

.

Besides, by (2.57), we have:

nhd+2
n E[Zn] + σn

√
ntn + btn

nhd+2
n

≤C

√ log h−1
n

nhd+2
n

+ hn

+
σn

√
ntn + btn

nhd+2
n

=C

√ log h−1
n

nhd+2
n

+ hn

+
√
∥K∥∞cδ + ∥K∥∞(dimM)δ2

≤
(
2C +

√
∥K∥∞c+ ∥K∥∞(dimM)

)
δ.

In addition, after (2.56), we have:

sup
f∈F

sup
x∈M

|Ahn,n(f)(x)−A(f)(x)| ≤ sup
f∈F

sup
x∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]|

+ sup
f∈F

sup
x∈M

|E[Ahn,n(f)(x)]−A(f)(x)|

≤ sup
f∈F

sup
x∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]|+ Chn

≤ sup
f∈F

sup
x∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]|+ Cδ.

Therefore, by letting

C ′ := 9[2C +
√

∥K∥∞c+ ∥K∥∞(dimM)] + C, (2.58)

where C is the constant appearing in (2.56) and (2.57), we have:

P

(
sup
f∈F

sup
x∈M

|Ahn,n(f)(x)−A(f)(x)| > C ′δ

)

≤ P

(
sup
f∈F

sup
x∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]| > C ′δ − Cδ

)

= P

(
sup
f∈F

sup
x∈M

|Ahn,n(f)(x)− E[Ahn,n(f)(x)]| > 9
(
2C +

√
∥K∥∞c+ ∥K∥∞(dimM)

)
δ

)
≤ exp

(
−δ2nhd+2

n

)
.

This proves Corollary 2.1.2.

2.6 Convergence of kNN Laplacians

We now consider the case of random walks exploring the kNN graph on M built on the vertices
{Xi}i⩾1, as defined in the introduction.
Recall that for n ∈ N, k ∈ {1, . . . n} and x ∈ M, the distance between x and its k-nearest
neighbor is defined in (2.8) and that the Laplacian of the kNN-graph is given by, for x ∈ M,

AkNN
n (f)(x) :=

1

nRd+2
n,kn

(x)

n∑
i=1

1[0,1]

(
∥Xi − x∥2
Rn,kn(x)

)
(f(Xi)− f(x)). (2.59)
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Notice here that the width of the moving window, Rn,kn(x), is random and depends on x ∈ M,
contrary to hn in the previous generator Ahn,n defined by (2.1).

To overcome this difficulty, we use the result of Cheng and Wu [28, Th. 2.3], with h = 1[0,1],
that allows us to control the randomness and locality of the window:

Theorem 2.6.1 (Cheng-Wu, Th. 2.3). Under Assumption 3, if the density p satisfies (2.10)
and if

lim
n→+∞

kn
n

= 0, and lim
n→+∞

kn
log(n)

= +∞,

then, with probability higher than 1− n−10,

sup
x∈M

∣∣∣∣∣ Rn,kn(x)

V
1/d
d p−1/d(x)

(
kn
n

)1/d − 1

∣∣∣∣∣ = O

((
kn
n

)2/d

+
3
√
13

d

√
log n

kn

)
, (2.60)

where Vd is the volume of unit d−ball.

As a corollary for Theorem 2.6.1, we deduce that the distance Rn,kn(x) is, uniformly in x and
with large probability, of the order of hn:

P(∀x ∈ M, Rn,kn(x) ∈ [hn(x)− γn, hn(x) + γn]) ⩾ 1− n−10, (2.61)

with

hn(x) = V
1/d
d p−1/d(x)

(
kn
n

)1/d

, and γn = 2

((
kn
n

)2/d

+
3
√
13

d

√
log n

kn

)
. (2.62)

We will then derive the limit Theorem 2.1.3 for the rescaling of the kNN Laplacian using next
result, proved right after.

Theorem 2.6.2. Suppose that the density of points p on the compact smooth manifold M is
of class C2. Suppose that Assumptions 3 for the kernel K are satisfied and that (hn, n ∈ N)
satisfies (2.5), i.e.

lim
n→+∞

hn = 0, and lim
n→+∞

log h−1
n

nhd+2
n

= 0.

Then, for all real number κ > 1, with probability 1, for all f ∈ C3(M),

sup
κ−1hn≤r≤κhn

sup
x∈M

|Ar,n(f)(x)−A(f)(x)| = O

√ log h−1
n

nhd+2
n

+ hn

 , (2.63)

where Ar,n and A are respectively defined by (2.1) (replacing hn with r) and (2.2).

Proof of Theorem 2.1.3. Assume that Theorem 2.6.2 is proved. We know that the event {∀x ∈
M, Rn,kn(x) ∈ [hn(x)−γn, hn(x)+γn]} is of probability 1−n−10. Therefore, by Borel-Cantelli’s
theorem, with probability 1, there exists N := N(ω) ∈ N such that:

∀n ≥ N : ∀x ∈ M, Rn,kn(x) ∈ [hn(x)− γn, hn(x) + γn].

Thus with probability 1, for all n ≥ N(ω), we have:∣∣∣AkNN
n (f)(x)−A(f)(x)

∣∣∣ ⩽ sup
r∈[an,bn]

|Ar,n(f)(x)−A(f)(x)|
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with:

an = V
1/d
d p−1/d

max

(
kn
n

)1/d

− γn and bn = V
1/d
d p

−1/d
min

(
kn
n

)1/d

+ γn. (2.64)

Notice that for n large enough, an will be positive. Using Theorem 2.6.2 with hn = bn and
κ = (pmax/pmin)

1/d + 1, we see that [an, bn] ⊂ [κ−1hn, κhn]. The result follows with the choice
of number of neighbors kn in (2.11) coming from (2.5) with our choice of hn. The rate of
convergence in (2.12) result from (2.6).

Proof for Theorem 2.6.2. The proof for the above theorem is essentially the same as the proof
we presented for Theorem 2.1.1 except some necessary modifications. Decomposing the error
term as in (2.17), we have to treat with similar terms. The approximations involving the geom-
etry and corresponding to Propositions 2.2.2 and 2.2.3 can be generalized directly to account
for a supremum in the window width r ∈ [κ−1hn, κhn]. Let us consider the statistical term.

We recall that F is defined by (2.47). Following the previous computations of Section 2.5, we
introduce the following sequence of random variables (Z̃n, n ∈ N), where here K = 1[0,1]:

Z̃n := sup
f∈F

sup
κ−1hn≤r≤κhn

sup
x∈M

∣∣∣∣Ar,n(f)(x)− E[Ar,n(f)(x)]

∣∣∣∣
=

1

nhd+2
n

sup
f∈F

sup
κ−1hn≤r≤κhn

sup
x∈M

∣∣∣∣∣
n∑
i=1

(
K

(
∥Xi − x∥2

r

)
(f(Xi)− f(x))

−E

[
K

(
∥X − x∥2

r

)
(f(X)− f(x))

])∣∣∣∣ .
Similar to what we did in Section 2.5.2, we can show that there is a constant c independent of
n such that:

nhd+2
n Z̃n ≤

m∑
α=1

Ỹ α
n +

m∑
α,β=1

Ỹ α,β
n + Ỹ (3)

n + 2nchd+3
n , (2.65)

where

Ỹ α
n := sup

κ−1hn≤r≤κhn
sup
x∈M

∣∣∣∣∣
n∑
i=1

[
K

(
∥Xi − x∥2

r

)
(Xα

i − xαi )E

(
K

(
∥X − x∥2

r

)
(Xα − xα)

)]∣∣∣∣∣
Ỹ α,β
n := sup

κ−1hn≤r≤κhn
sup
x∈M

∣∣∣∣∣
n∑
i=1

[
K

(
∥Xi − x∥2

r

)
(Xα

i − xα)(Xβ
i − xβ)−

E

(
K

(
∥X − x∥2

r

)
(Xα − xα)(Xβ − xβ)

)]∣∣∣∣
Ỹ (3)
n := sup

κ−1hn≤r≤κhn
sup
x∈M

∣∣∣∣∣
n∑
i=1

K

(
∥Xi − x∥2

r

)
∥Xi − x∥32 − E

[
K

(
∥X − x∥2

r

)
∥X − x∥32

]∣∣∣∣∣ .
We now treat these terms by applying Vapnik-Chernonenkis theory. Let us start with the
control the first order terms E[Ỹ α

n ]:
In Section 2.5.3.1, we have already shown that the family

G :=

{
φh,y,z : x 7−→ K

(
∥x− y∥2

h

)
(xα − zα) : y, z ∈ M, h > 0

}
is a VC class of functions, and that there exist real values A ≥ 6, v ≥ 1 such that, for all
ε ∈ (0, 1), N(ε,G) ≤

(
A/2ε

)v
.
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Now, on top of this, we consider the following sequence of families of real functions on M:

H̃n =
{
φr,y : y ∈ M, κ−1hn ≤ r ≤ κhn

}
,

with φr,y : x 7−→ K
(
∥x−y∥2

r

)
(xα − yα). Because each H̃n is a subfamily of G, it is still a

VC class for which we can use the Talagrand inequality 2.5.3. The latter can deal with the
additional supremum with respect to the window width. Similarly to what we did in the proof
of Proposition 2.5.5, we obtain that:

1

nhd+2
n

E

∥∥∥∥∥
n∑
i=1

(f(Xi)− E[f(X)])

∥∥∥∥∥
H̃n

 = O

√ log h−1
n

nhd+2
n

 ,

which means that as n→ ∞,

1

nhd+2
n

E[Ỹ α
n ] = O

√ log h−1
n

nhd+2
n

 .

The control the second and third order terms are done as in Sections 2.5.3.2 and 2.5.3.1, using
the same trick and the classes of functions

Ĩn :=

{
x 7→ K

(
∥x− y∥

r

)
(xα − yα)(xβ − qβ) : y ∈ M, q ∈ M, κ−1hn ≤ r ≤ κhn

}
and

K̃n :=

{
x 7→ K

(
∥x− y∥

r

)
∥x− y∥3 : y ∈ M, κ−1hn ≤ r ≤ κhn

}
.

This provides:

1

nhd+2
n

E[Ỹ α,β
n ] = O

√ log h−1
n

nhd+2
n

 , and
1

nhd+2
n

E[Ỹ (3)
n ] = O

√ log h−1
n

nhd+2
n

 . (2.66)

Therefore, we can deduce the conclusion by using the same argument presented in Section
2.5.4.

2.7 Tightness and convergence of the random walks

2.7.1 Proof of Theorem 2.1.4

Let K be a kernel that satisfies Assumption 3. Let n ⩾ 1 be fixed. Recall that the generator
Ahn,n can be related to a random walk X(n) on the sample points {X1, . . . , Xn}, which is
solution of the following stochastic differential equation:

X
(n)
t = X

(n)
0 +

∫ t

0

∫
N

∫
R+

1i⩽n1
θ⩽ 1

nhd+2
n

K

(
∥Xi−X

(n)
s− ∥2

hn

)(Xi −X(n)
s− ) Q(ds, di,dθ)

with initial condition X
(n)
0 and where Q(ds, di,dθ) is a Poisson point measure on R+ ×N×R+

independent of X
(n)
0 , and of intensity ds ⊗ n(di) ⊗ dθ, with ds and dθ Lebesgue measures on

R+ and n(di) the counting measure on N.

Remark 2.7.1. The initial distribution of X
(n)
0 can have support on the sample points {X1, . . . , Xn},

but not necessarily. It can be any distribution on the manifold M. In any case, the random
walk reaches the sample points {X1, . . . Xn} – and stays in this set – after the first jump.
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Proposition 2.7.2. For a fixed n ⩾ 1, a random variable X
(n)
0 and a Poisson point measure

Q(ds, di, dθ), there exists a unique strong solution of the stochastic differential equation (2.13).
For any real-valued measurable bounded function f on M, we have that

Mn,f
t = f(X

(n)
t )− f(X

(n)
0 )−

∫ t

0
Ahn,n(f)(X

(n)
s ) ds (2.67)

is a square-integrable martingale with predictable quadratic variation:

⟨Mn,f ⟩t =
∫ t

0

1

nhd+2
n

n∑
i=1

K

(
∥Xi −X

(n)
s ∥2

hn

)(
f(Xi)− f(X(n)

s )
)2

ds. (2.68)

Proof. The proof is straightforward as the process takes its values in the compact manifold
M. The jump rate remains therefore bounded and the path of the random walk X(n) can be
constructed algorithmically for any time t ∈ R+. The second part of the proposition comes from
stochastic calculus for jump processes (see [68, Th. 5.1, page 66]).

Let T > 0 be a positive fixed time. The proof of Theorem 2.1.4 is now divided into several steps.
First, we prove that the sequence of processes (X(n))n⩾0 is tight in the path-space D[0, T ],M).
By Prohorov’s theorem (e.g. [21]), the sequence is therefore sequentially relatively compact.
The convergence of the generators Ahn,n to A defined in (2.2) will yield that any limiting value
is solution of the martingale problem associated with A, which is well-posed.

Lemma 2.7.3. Under the hypotheses of Theorem 2.1.4, the sequence (Xn)n⩾0 is tight in
D[0, T ],M).

Proof. We check conditions (T1) and (T2) in Aldous criteria for tightness (see e.g. [71, 6]).
Because M is compact, only (T2) needs to be considered. Thanks to Markov inequality, it is
sufficient to show that for any ε > 0, there exists δ > 0 such that for any couple of stopping
times (Sn, Tn)n⩾0 satisfying 0 ⩽ Sn ⩽ Tn ⩽ (Sn + δ) ∧ T , we have for all n sufficiently large
that:

P
(
ρ
(
X

(n)
Sn
, X

(n)
Tn

)
> ε
)
⩽ ε. (2.69)

By Markov inequality and Theorem 2.2.1, it is sufficient to study E

[∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2

]
. We

observe that,

E

[∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2

]
⩽ E

[∫ Tn

Sn

n∑
i=1

1

nhd+2
n

K

(
∥Xi −X

(n)
s ∥2

hn

)∥∥∥Xi −X(n)
s

∥∥∥2
2
ds

]

⩽δ E

[
sup
x∈M

n∑
i=1

1

nhd+2
n

K

(
∥Xi − x∥2

hn

)
∥Xi − x∥22

]

⩽δ sup
x∈M

1

hd+2
n

∫
K

(
∥x− y∥2

hn

)
∥x− y∥22p(y)µ(dy)

+ δ
1

hd+2
n

E

[
sup
x∈M

∣∣∣∣∣ 1n
n∑
i=1

K

(
∥Xi − x∥2

hn

)
∥Xi − x∥22 − E

[
K

(
∥X1 − x∥2

hn

)
∥X1 − x∥22

]∣∣∣∣∣
]
.

Since p is bounded on the compact M by continuity, using (2.35) of Lemma 2.4.1, and using

the estimate of Y
(α,β)
n in Section 2.5.3.2 based on the Vapnik-Chervonenkis theory, we deduce

that there is a constant C > 0, which does not depend on n nor ε, such that

E

[∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2

]
⩽ Cδ. (2.70)

Choosing δ = ε2/C yields (2.69).
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Consider now a limiting value Y ∈ D([0, T ],M) of the tight sequence (X(n))n⩾0. There exists a
subsequence converging in distribution to Y . Using Skorokhod representation theorem (see [20,
Th. 29.6 p.399]) we can assume that this convergence holds almost surely and with an abuse
of notation, we keep the notation (X(n))n⩾0 for the subsequence converging to Y .

Lemma 2.7.4. Under the hypothesis of Theorem 2.1.4, any limiting value Z of the sequence
(X(n))n⩾0 is a solution to the martingale problem associated to the generator A and with initial
measure ν.

Proof. By assumption, Z0 has the distribution ν, so it is sufficient to show that for all 0 ≤ t0 <
t1 < t2 < · · · < tk ⩽ s < t and functions g1, g2, g2, . . . , gk, g ∈ C(M), f ∈ C3(M), we have:

E

[(
k∏
i=0

gi(Yti)

)(
f(Yt)− f(Ys)−

∫ t

s
Af(Yu)du

)]
= 0.

Let us denote by Ψ the application:

Ψ : y ∈ D([0, T ],M) 7→

(
k∏
i=0

gi
(
yti
))(

f
(
yt
)
− f

(
ys
)
−
∫ t

s
Af(yu)du

)
.

We have:∣∣∣E[Ψ(X(n)
)]∣∣∣ ⩽ ∣∣∣∣∣E

[(
k∏
i=0

gi
(
X

(n)
ti

))(
f
(
X

(n)
t

)
− f

(
X(n)
s

)
−
∫ t

s
Ahn,nf(X

(n)
u )du

)]∣∣∣∣∣
+

∣∣∣∣∣E
[(

k∏
i=0

gi
(
X

(n)
ti

)) ∫ t

s

(
Ahn,nf(X

(n)
u )−Af(X(n)

u

)
du

]∣∣∣∣∣
=O

(t− s)

√
log h−1

n

nhd+2
n

+ hn

 ,

by Proposition 2.7.2 and Theorem 2.1.1. The application Ψ is not continuous on D([0, T ],M)
in general, but since the limiting process is continuous a.s., we have that Ψ(X(n)) converges to
Ψ(Y ) a.s. We can then conclude the proof as E[Ψ(Y )] = 0 by using the dominated convergence
theorem.

Proof of Theorem 2.1.4. From Lemmas 2.7.3 and 2.7.4, the limiting processes are all solutions of
the same martingale problem associated with (A, ν). The well-posedness of the latter martingale
problem is a consequence of Theorem 1.2.9 in [67]. Hence the limiting processes all have the
same distribution and the sequence (X(n))n⩾0 converges in distribution to the limit stated in
Theorem 2.1.4.

2.7.2 Convergence of the kNN random walk

We prove Theorem 2.1.5. For the sake of notation, the random walk X(n),kNN is now denoted
by X(n). Let us recall its SDE:

X
(n)
t = X

(n)
0 +

∫ t

0

∫
N

∫
R+

1i⩽n1θ⩽ 1

nRd+2
n,kn

(X
(n)
s− )

1[0,1]

∥Xi −X
(n)
s− ∥2

Rn,kn

(
X

(n)
s−

)
(Xi −X(n)

s− ) Q(ds, di,dθ)

with

Rn,k(x) = inf
{
r ⩾ 0,

n∑
i=1

1∥x−Xi∥2⩽r ⩾ k
}
.
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The related martingale is thus,

Mn,f
t = f(X

(n)
t )− f(X

(n)
0 )−

∫ t

0
AkNN
n (f)(X(n)

s ) ds

with predictable quadratic variation:

⟨Mn,f ⟩t =
∫ t

0

n∑
i=1

1[0,1]

∥Xi −X
(n)
s ∥2

Rn,kn

(
X

(n)
s

)
(f(Xi)− f(X(n)

s )
)2

ds.

As in the proof of Lemma 2.7.3, to obtain the tightness of the distribution, thanks to Aldous
criterion, it is sufficient to show that for any ε > 0, there exists δ > 0 such that for any couple of
stopping times (Sn, Tn)n⩾0 satisfying 0 ⩽ Sn ⩽ Tn ⩽ (Sn + δ) ∧ T , we have for all n sufficiently
large that:

P
(
ρ
(
X

(n)
Sn
, X

(n)
Tn

)
> ε
)
⩽ ε.

We observe that, using the quantities hn(x) and γn defined by (2.62) in Section 2.6,

P
(
ρ
(
X

(n)
Sn
, X

(n)
Tn

)
> ε
)
⩽P

(
ρ
(
X

(n)
Sn
, X

(n)
Tn

)
> ε, sup

x∈M
|Rn,kn(x)− hn(x)| ⩽ γn

)
+P

(
sup
x∈M

|Rn,kn(x)− hn(x)| > γn

)
⩽

1

ε2
E

(∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2
1supx∈M |Rn,kn (x)−hn(x)|⩽γn

)
+ n−10.

Introducing (an, bn) given by (2.64), we have [hn(x)− γn, hn(x) + γn] ⊂ [an, bn] for all x ∈ M.
Thus, on the event {supx∈M |Rn,kn(x)− hn(x)| ⩽ γn}, we have:∥∥∥X(n)

Tn
−X

(n)
Sn

∥∥∥
2

⩽
∫ Tn

Sn

∫
N

∫
R+

1i⩽n1θ⩽ 1

nRd+2
n,kn

(X
(n)
s− )

1[0,1]

∥Xi −X
(n)
s− ∥2

Rn,kn

(
X

(n)
s−

)
∥∥∥Xi −X(n)

s−

∥∥∥
2
Q(ds, di,dθ)

⩽
∫ Tn

Sn

∫
N

∫
R+

1i⩽n1θ⩽ 1

nad+2
n

1∥Xi−X
(n)
s− ∥2⩽bn

∥∥∥Xi −X(n)
s−

∥∥∥
2
Q(ds, di,dθ)

We deduce that

E

[∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2
1supx∈M |Rn,kn (x)−hn(x)|⩽γn

]
⩽E

[∫ Tn

Sn

n∑
i=1

1

nad+2
n

1∥Xi−X
(n)
s− ∥2⩽bn

∥∥∥Xi −X(n)
s

∥∥∥2
2
ds

]

⩽
δ

nad+2
n

E

[
sup
x∈M

n∑
i=1

1∥Xi−x∥2⩽bn∥Xi − x∥22

]

⩽
δ

ad+2
n

∫
M

1∥x−y∥2⩽bn∥x− y∥22 p(y)µ(dy)

+
δ

ad+2
n

E

[
sup
x∈M

∣∣∣∣∣ 1n
n∑
i=1

1∥Xi−x∥2⩽bn∥Xi − x∥22 − E
[
1∥X1−x∥2⩽bn∥X1 − x∥22

]∣∣∣∣∣
]

As in the proof of Lemma 2.7.3, we use for the first term in the right hand side that p is
bounded on the compact M and (2.35) of Lemma 2.4.1. For the second term we use the
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estimate of Ỹ
(α,β)
n in Section 2.6 based on the Vapnik-Chervonenkis theory, and the fact that

[an, bn] ⊂ [κ−1hn, κhn]. We deduce that there is a constant C > 0, which does not depend on n
nor ε, such that

E

[∥∥∥X(n)
Sn

−X
(n)
Tn

∥∥∥2
2

]
⩽ Cδ. (2.71)

This shows that the sequence of random walks is tight. The identification of the limiting mar-
tingale problem follows the proof of Theorem 2.1.4 using Theorem 2.1.3.
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2.9 Appendices

2.9.1 Some concentration inequalities

2.9.1.1 Talagrand’s concentration inequality

As a corollary of Talagrand’s inequality presented in Massart [86, Theorem 3], where for sim-
plicity we choose ε = 8, we have the following deviation inequality:

Corollary 2.9.1 (Simplified version of Massart’s inequality). Consider n independant random
variables ξ1, . . . , ξn with values in some measurable space (X,X). Let F be some countable
family of real-valued measurable functions on (X,X) such that for some positive real number b,
∥f∥∞ ≤ b for every f ∈ F .

Z := sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(ξi)− E [f(ξi)]

)∣∣∣∣∣ .
then with σ2 = supf∈F Var(f(ξ1)), and for any positive real number x,

P
(
Z ≥ 9(E[Z] + σ

√
nx+ bx)

)
≤ e−x.

2.9.1.2 Covering numbers and complexity of a class of functions

If S ⊂ T is a subspace of T , it is not true in general that N(ε, S, d) ≤ N(ε, T, d) because of
the constraints that the cencers xi should belong to S. However, we can bound the covering
number of S by T ’s as follows

Lemma 2.9.2. If S ⊂ T is a subspace of the metric space (T, d), then for any positive number
ε

N(2ε, S, d) ≤ N(ε, T, d).

Proof. Let {x1, ..., xN} be a ε-cover of T and for any i ∈ [[1, N ]], let us define Ki := {x ∈ T :
d(x, xi) ≤ ε}. Of course, Ki may not intersect S, hence, without loss of generality, assume that
for a natural number 0 < m ≤ N we have that Ki ∩ S ̸= ∅ if and only if i ≤ m. Let yi be any
point in Ki ∩ S for i ∈ [[1,m]]. Since {x1, ..., xN} is a ε cover of T , for any y ∈ S, there exists
a i ≤ m such that y ∈ Ki ∩ S. Hence, d(y, yi) ≤ 2ε. Consequently, y1, ..., ym be a 2ε-cover of
(S, d).
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Let us consider the Borel space (Rm,B(Rm)). If F ,G are two collections of measurable functions
on X, we are interested in the ”complexity” of F · G = {fg|f ∈ F , g ∈ G}.

Lemma 2.9.3 (Bound on ε-covering numbers). Let F ,G be two bounded collections of measur-
able functions, i.e, there are two constants c1, c2 such that

∥f∥∞ ≤ c1 and ∥g∥∞ ≤ c2 for all f ∈ F , g ∈ G.

then for any probability measure Q,

N(2εc1c2,F · G, L2(Q)) ≤ N(εc1,F , L2(Q))N(εc2,G, L2(Q)).

Proof. If f1, f2, ..., fn is a εc1-cover of (F , L2(Q)) and g1, g2, ..., gm is a εc2-cover of (G, L2(Q)),
then for any (f, g) ∈ F × G, we have:

|f(x)g(x)− fi(x)gj(x)| ≤ |f(x)− fi(x)|c2 + c1|g(x)− gi(x)|.

which implies that {figj : 1 ≤ i ≤ n and 1 ≤ j ≤ m} is a 2εc1c2 -cover of F · G.

The following lemma is just a simplied version result of the theory of VC Hull class of functions
(Section 3.6.3 in [56]).

Lemma 2.9.4. If f is a bounded measurable function on the measurable space (Rm,B(Rm)) and
D = [a, b] ⊂ R is a compact interval, then

F := {f + d : d ∈ D},

is VC type with respect to a constant envelope.

Proof. Let N = [ b−aε ], fi = f + iε for all i ∈ [[1, N ]]. So, by the definition of F , for all g ∈ F ,
there is an i ∈ [[1, N ]] such that |g(x) − fi(x)| < ε for all x ∈ Rm. Thus, for all probability
measure Q on Rm, we have: ∥g − fi∥L2(Q) ≤ ε, which makes H := {fi : i ∈ [[1, N ]]} be a ε-cover
of L2(Q). Hence,

N(ε,F , L2(Q)) ≤ N ≤ (b− a)

ε
.

So F is a VC-type class of functions with A = b−a, v = 1,F = max(1, ∥f∥∞+|a|, ∥f∥∞+|b|).

2.9.2 Some estimates using the total variation

Lemma 2.9.5. If K : [0,+∞) → R is a bounded variation function with H(a) its total variation
on the interval [0, a], for all a, b ∈ [0,∞], with a ⩽ b,

|K(b)−K(a)| ≤ H(b)−H(a). (2.72)

Besides, if K satisfies Assumption 3, then, when b goes to infinity,

K(b)bd+3 = o(1) and

∫ ∞

b
K(a)ad+1da = o(1/b). (2.73)

Proof of Lemma 2.9.5. Inequality (2.72) comes directly from the definition of total variation.
We note that:

bd+3(H(∞)−H(b)) ≤
∫ ∞

b
ad+3dH(a).

Then, by Assumption 3,

lim
b→+∞

bd+3(H(∞)−H(b)) = 0.
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Then, as:
K(b)bd+3 ≤ bd+3(H(∞)−H(b)),

we have proven the first estimation in (2.73).
For the second estimation, we see that:

(d+ 2)

∫ ∞

b
bK(a)ad+1da ≤ (d+ 2)

∫ ∞

b
b(H(∞)−H(a))ad+1da

=− bd+3(H(∞)−H(b)) + b

∫ ∞

b
ad+2dH(a)

≤− bd+3(H(∞)−H(b)) +

∫ ∞

b
ad+3dH(a).

Therefore, we have the conclusion.

2.9.3 Proof of Lemma 2.4.2

Thanks to the symmetry of the Euclidean norm ∥ · ∥2, we observe that for any i, j ∈ [[1, d]],∫
BRd (0,c)

G(∥v∥2)vivjdv =

{
0 if i ̸= j,
1
d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv if i = j.

Thus, LHS of (2.41) is equal to:

=

[
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv

][
d∑
i=1

〈
∇Rmf(x),

∂k

∂xi
(0)

〉〈
∇Rmh(x),

∂k

∂xi
(0)

〉]

=

[
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv

][
d∑
i=1

∂(f ◦ k)
∂xi

(0)
∂(h ◦ k)
∂xi

(0)

]

=

[
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv

] 〈
∇Rd(f ◦ k)(0),∇Rd(h ◦ k)(0)

〉
.

Hence, we have (2.41).
For (2.42), for all i, thanks again to the symmetry of the Euclidean norm ∥ · ∥2, we have∫

BRd (0,c)
G(∥v∥2)vidv = 0,

Thus, LHS of (2.42) is equal to[〈
∇Rmf(x),

1

2

d∑
i=1

∂2k

∂xi∂xi
(0)

〉
+

1

2

d∑
i=1

f ′′(x)

(
∂k

∂xi
(0),

∂k

∂xi
(0)

)]
1

d

∫
BRd (0,c)

G(∥v∥2)∥v∥22dv.

Besides, since k(0) = x,〈
∇Rmf(x),

d∑
i=1

∂2k

∂xi∂xi
(0)

〉
+

d∑
i=1

f ′′(x)

(
∂k

∂xi
(0),

∂k

∂xi
(0)

)

=
d∑
i=1

 m∑
j=1

∂f

∂xj
(x)

∂2kj

∂xi∂xi
(0) +

m∑
j,l=1

∂2f

∂xj∂xl
(x)

∂kj

∂xi
(0)

∂kl

∂xi
(0)


=

d∑
i=1

 m∑
j=1

∂

∂xi

(
∂f

∂xj
◦ k × ∂kj

∂xi

) ∣∣∣
0


=

d∑
i=1

∂2(f ◦ k)
∂xi∂xi

(0) = ∆Rd(f ◦ k)(0).
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This ends the proof of Lemma 2.4.2.
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Convergence in Wasserstein distance of occupation
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been submitted for publication. We would like to thank Frédéric Rochon for his advice on the
differential geometry literature, which helped us to tackle some concepts more efficiently.

From the observation of a diffusion path (Xt)t∈[0,T ] on a compact connected d-dimensional
manifold M without boundary, we consider the problem of estimating the stationary measure
µ of the process. Wang and Zhu (2023) showed that for the Wasserstein metricW2 and for d ≥ 5,
the convergence rate of T−1/(d−2) is attained by the occupation measure of the path (Xt)t∈[0,T ]
when (Xt)t∈[0,T ] is a Langevin diffusion. We extend their result in several directions. First, we
show that the rate of convergence holds for a large class of diffusion paths, whose generators
are uniformly elliptic. Second, the regularity of the density p of the stationary measure µ with
respect to the volume measure of M can be leveraged to obtain faster estimators: when p
belongs to a Sobolev space of order ℓ > 0, smoothing the occupation measure by convolution
with a kernel yields an estimator whose rate of convergence is of order T−(ℓ+1)/(2ℓ+d−2). We
further show that this rate is the minimax rate of estimation for this problem.

83
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3.1 Introduction

The manifold hypothesis has become ubiquitous in the modern machine learning landscape,
where it is commonly used to explain the efficiency of nonparametric methods in high-dimensional
statistical models [23]. This paradigm has motivated statisticians to study inference problems
under manifold constraints [91, 52, 3, 4, 36, 99]. Given n i.i.d. samples from a distribution µ
supported by a d-dimensional manifold compact M, the task of estimating either µ or geomet-
ric quantities related to M naturally arises. The picture is now well-understood. For example,
minimax rates are known for the estimation of M with respect to the Hausdorff distance [53],
for tangent space estimation [117, 4], and for curvature estimation [2, 4, 17, 1]. The estimation
of the measure µ has been tackled in a pointwise manner [19], with respect to the Wasserstein
distance [37, 109], or with respect to more general adversarial losses [111]. Once again, mini-
max rates of estimation are known and are typically achieved by kernel-like estimators. Yet,
the literature is far less abundant when we leave the i.i.d. setting.

However, a framework in which the data is generated through an exploration process is also
natural. This setting is especially relevant in scenarios where the manifold is seen as the con-
tinuum limit of a large graph, the latter being explored by a random walk (think for instance
of the famous PageRank algorithm [94]). At the limit, this random walk converges to a con-
tinuous time diffusion exploring the manifold. Formally, we will consider that we have access
to a sample path (Xt)t∈[0,T ] on [0, T ] of a diffusion process on a submanifold M ⊆ Rm, that is
generated by a uniformly elliptic C2-differential operator A, essentially self-adjoint with respect
to some invariant measure µ. Our goal is to propose reconstruction methods for the measure µ
based on the observation of the sample path (Xt)t∈[0,T ].

The general framework we work in encapsulates in particular operators of the form Apq, given
for any test function f of class C2 on M by

Apq(f) := q∆f + ⟨q∇ ln(pq),∇f⟩, (3.1)

where p, q ∈ C2 are two positive functions, with p being the density of the measure µ with
respect to the volume measure dx on M and ∇ and ∆ denote respectively the gradient and
the Laplace-Beltrami operator on M (see e.g. [120]). When we take q = p

2 , we recover the
generator

p

2
∆f + ⟨∇p,∇f⟩

studied in [25, 55, 61]. When q = 1, we recover a Langevin diffusion, whose generator L is
defined for any test function f of class C2 on M by

L(f) :=∆f + ⟨∇ ln p,∇f⟩ = ∆f +

〈
∇p
p
,∇f

〉
. (3.2)

Processes with this kind of generators can be obtained as the limits of random walks (without
and with renormalization) visiting points sampled independently with identical distribution
(i.i.d.) µ(dx) = p(x)dx on M, see e.g. [25, 55, 61].

In Rm, the question of estimating the invariant measure of a diffusion has been treated abun-
dantly, see [30, 42, 95, 102] (notice that the problem could also be studied with the different
point of view of non-parametric estimation for diffusion processes, see e.g. [31]). For manifold-
valued data, the problem of reconstructing the stationary measure µ from a sample path was
first addressed by Wang and Zhu [121] for the generator (3.2). They consider the occupation
measure µT of the process, defined for every bounded measurable test function f by∫

M
f(x)µT (dx) =

1

T

∫ T

0
f(Xs) ds. (3.3)



3.1. INTRODUCTION 85

Let P(M) be the space of probability measures on the compact connected d-dimensional Rie-
mannian manifold M. We introduce the 2-Wasserstein distance on P(M), defined by

W2(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
M×M

ρ(x, y)2π(dx, dy)

)1/2

,

where ρ is the geodesic distance on M and C(µ1, µ2) is the set of measures on M × M with
first marginal µ1 and second marginal µ2. Wang and Zhu [121, Theorem 1.2] showed that for
the process with generator L,

Ex
[
W2

2 (µT , µ)
]
≲


T−1 when d ≤ 3

T−1 ln(1 + T ) when d = 4

T− 2
d−2 when d ≥ 5,

(3.4)

where Ex stands for the expectation taken from the diffusion process starting at x ∈ M. As
noticed by Divol [37], in the context of i.i.d. random variables X1, . . . Xn sampled from µ on
M, the rate of convergence can be increased by smoothing the empirical measure. Our purpose
here is to extend this result beyond the i.i.d. setting, by studying the convergence properties
of an estimator µ̂T,h of µ, obtained by smoothing the occupation measure µT with a kernel K
of bandwidth h > 0. When d ≥ 5 and for an appropriate choice of h, we obtain the rate of
convergence

Ex
[
W2

2 (µ̂T,h, µ)
]
≲ T− 2ℓ+2

2ℓ+d−2 , (3.5)

where µ has a density of regularity ℓ ≥ 2. The above rate does not only hold for the Langevin
diffusion with generator L, but for all diffusion paths (Xt)t∈[0,T ] whose generatorA is a uniformly
elliptic C2-differential operator, essentially self-adjoint with respect to µ. Furthermore, we will
show that these rates cannot be improved by providing minimax rates of convergence for this
problem.

In Section 3.2, we define the estimator µ̂T,h and enounce precisely our main result. In Section
3.3, we review some useful notions of Riemannian geometry. In Section 3.4, we start the proof
by treating the stationary case, i.e., when the initial measure of the SDE is µ, and then give a
generalization for a general initial measure.

Notation. Throughout the paper, we fix a smooth compact d-dimensional connected submani-
fold M of Rm, without boundary, and embedded with the Riemannian structure induced by the
ambient space Rm. The volume measure on M is denoted by dx. Without loss of generalization,
we assume that vol(M) = 1. Unless stated otherwise, quantities c0, c1, . . . are constants that
are only allowed to depend on the manifold M. We write ca for a constant depending on an
additional parameter a. The geodesic distance on M is denoted by ρ, and B(x, r) is the geodesic
open ball centered at x ∈ M of radius r ≥ 0. We also let BRd(u, r) be the open ball centered at
u ∈ Rd of radius r.

For µ a probability measure, we will denote by L2(µ) the space of real-valued measurable
functions f on M such that

∫
|f |2dµ < ∞. More generally, for p ≥ 1, we let Lp(µ) denote the

space of Lp functions with respect to µ, with ∥ · ∥Lp(µ) the corresponding norm. For k ≥ 0, we

denote by Ck(M) the space of k-times continuously differentiable real-valued functions defined
on M, endowed with the norm

∥f∥Ck(M) := sup
0≤i≤k

sup
x∈M

∥∇if(x)∥, (3.6)

where ∇if(x) is the ith iterated covariant derivative of f at x. By abuse of notation, we use
the same notation for the uniform norm ∥.∥∞ on R+, on M, and on Rd.
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3.2 Main results

We consider the framework described at the beginning of the paper. Let µ(dx) = p(x)dx be a
probability measure on M with a positive density p of class C2, and (Xt)t≥0 be a diffusion on
M with generator A.

Assumption 4. A : C∞(M) → C2(M) is a uniformly elliptic C2-differential operator of second
order on M, symmetric with respect to the measure µ.

This diffusion admits µ as stationary measure. In the sequel, this generator is extended, as is
usually done, to L2(µ) functions. We introduce a concept closely associated with second-order
differential operators, known as the “carré du champ” Γ(f, g) for the operator A:

Γ(f, g) =
1

2
(A(fg)− fA(g)− gA(f)) (3.7)

Given that A is symmetric with respect to µ, for any smooth functions f and g, it follows that:∫
M

Γ(f, g)dµ = −
∫
M
fA(g)dµ = −

∫
M

A(f)gdµ. (3.8)

Since M is compact, from the regularity of p, there exist pmin, pmax > 0 such that,

∀x ∈ M, pmin ≤ p(x) ≤ pmax. (3.9)

Furthermore, the uniform ellipticity, the continuity of A and the compactness of M imply that
there exist positive constants κmin, κmax such that for all functions f ,

κmin|∇f |2 ≤ Γ(f, f) ≤ κmax|∇f |2. (3.10)

We denote by Eµ0 and Pµ0 the expectation and probability taken for the diffusion process with
initial distribution µ0. When µ0 is a Dirac measure δx, with x ∈ M, we will simply write Ex
and Px.
Let T > 0 be a time horizon, and assume that we observe the diffusion (Xt)t≥0 on the time
window [0, T ]. We consider the occupation measure µT on [0, T ] of the diffusion (Xt)t≥0 as the
positive measure defined by (3.3). As explained in the introduction, the occupation measure can
be seen as a first naive estimator of the measure µ, that will be improved upon by convolution
with a kernel Kh.
LetK : R+ → R be a (signed) Lipschitz-continuous function supported in [0, 1], with

∫
Rd K(∥u∥)du =

1. We define for h > 0 and (x, y) ∈ M2,

Kh(x, y) :=
1

ηh(x)
K

(
∥x− y∥

h

)
, (3.11)

with ηh(x) =

∫
M
K

(
∥x− y∥

h

)
dy. We will show later (in Lemma 3.4.2) that ηh > 0 for h small

enough, ensuring that the kernel Kh is well-defined. We consider the following estimator of the
density p of µ obtained by convolution of the occupation measure µT with Kh. For x ∈ M,

pT,h(x) :=

∫
M
Kh(z, x)µT (dz) =

1

T

∫ T

0
Kh(Xs, x)ds

=
1

T

∫ T

0

1

ηh(Xs)
K

(
∥Xs − x∥

h

)
ds. (3.12)

Thanks to the definition of ηh, we notice that∫
M
pT,h(x)dx = 1.
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However, the function pT,h is not necessarily a density, as it may not be nonnegative everywhere
(recall that K is a signed function). Still, we will show in this article that the function pT,h
approximates the density p and is nonnegative, and is therefore a density, with high probability.
Let x0 be an arbitrary fixed point of M. We introduce two random measures µT,h, and µ̂T,h on
M, defined by

µT,h(dx) = pT,h(x)dx, and µ̂T,h =

{
µT,h if µT,h is a nonnegative measure,

δx0 otherwise.
(3.13)

The measure µ̂T,h is introduced for purely technical purposes. Indeed, the measure µT,h may
not be a probability measure (with exponentially small probability), so that the risk W2(µT,h, µ)
may not even be defined, whereas W2(µ̂T,h, µ) is always defined.

Remark 3.2.1. It would have been arguably more convenient to work with a kernel based on

the geodesic distance ρ, i.e. a kernel K̃h defined by K̃h(x, y) :=
1

η̃h(x)
K
(
ρ(x,y)
h

)
, with η̃h(x) =∫

MK
(
ρ(x,y)
h

)
dy. For instance, we can easily prove that

(
h−dη̃h

)
h>0

converges to 1 uniformly

on M, with a speed of convergence of order h2. Such a property also holds for ηh, but only
for sufficiently smooth kernels K satisfying some moments assumptions (see Definition 3.7.1).
However, for statistical purposes, the use of the Euclidean distance in (3.11) seems natural in
the context where the manifold M (and hence the geodesic distance ρ) is unknown. Yet, the
study of the convolution with the kernel K̃h is of own interest and is treated in [?]. Moreover,
remark that since the manifold M is assumed to be compact, the geodesic distance ρ(·, ·) on M
and the Euclidean distance ∥ · ∥ of Rm are known to be equivalent, see e.g. [51, Proposition 2].

We are now in position to state our main result, which gives the rate of convergence of µ̂T,h to
µ when the diffusion path (Xt)t∈[0,T ] exploring the manifold has generator A. More precisely,
our purpose is to upper-bound

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µ)
]
. (3.14)

For any initial measure µ0, we can write Eµ0 as a mixture Eµ0 [·] =
∫

Ex[·]µ0(dx). Hence, a
bound on the uniform risk defined in (3.14) automatically implies a bound on the risk for any
initial measure. As often, such a bound is obtained by decomposing the loss into a bias term
W2

2 (µh, µ) and a variance term Ex
[
W2

2 (µ̂T,h, µh)
]
, where

µh(dx) = ph(x)dx with ph(x) :=

∫
M
Kh(z, x)p(z)dz (3.15)

=

∫
M

1

ηh(z)
K

(
∥z − x∥

h

)
p(z)dz.

is the intensity measure of the random measure µT,h.
The control of the variance term Ex

[
W2

2 (µ̂T,h, µh)
]
relies on fine spectral properties of the

generator of the diffusion. The proof of the following result is detailed in Section 3.4 for a
diffusion starting from its invariant measure µ and in Section 3.5 for a diffusion starting from
a general initial distribution. The bound on the variance in the following theorem depends on
the ultracontractivity constant uA of the generator A, defined in Section 3.5.

Theorem 3.2.2 (Estimation from a diffusion with generator A). Let d ≥ 1 and p be a positive
C2 density function with associated measure µ. Let (Xt)t≥0 be a diffusion with generator A
satisfying Assumption 4. Let T ≥ 2 and let 0 < h ≤ h0 for some constant h0 depending on M
and K. Assume that either K is nonnegative or that d ≥ 4 and that Thd ≥ c ln(T ) (in which
case, h0 additionally depends on pmin and on the C1-norm of p). Then,

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µh)
]
≤ c0

uAp
2
max

p2min

∥K∥2∞


h4−d

T if d ≥ 5
ln(1/h)
T if d = 4

1
T if d ≤ 3,

(3.16)
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where c0 depends on M, and c depends on M, K, pmin, pmax and κmin.

The second term in the risk decomposition is the bias termW2
2 (µh, µ), which was already studied

by Divol in [37]. Let ℓ ≥ 0. We introduce the Sobolev space Hℓ(M) as the completion of the
set of smooth functions on M with respect to the norm:

∥f∥Hℓ(M) := max
0≤i≤ℓ

(∫
M

∥∇if(x)∥2 dx
)1/2

.

As M is compact, we note that for any f ∈ Cℓ(M), ∥f∥Hℓ(M) ⩽ ∥f∥Cℓ(M) and Cℓ(M) is a

subset of Hℓ(M).
Under additional technical conditions on the kernel K (recalled in Section 3.7), Divol showed
that if p ∈ Hℓ(M) for some ℓ ≥ 0, then

W2
2 (µh, µ) ≤ c1

∥p∥2
Hℓ(M)

p2min

h2ℓ+2, (3.17)

where c1 depends only on M and K, see Proposition 3.7.2. As a corollary of Theorem 3.2.2
and (3.17), we obtain a tight control on the risk of the estimator µ̂T,h.

Corollary 3.2.3. Let d ≥ 5 and p be a positive C2 density function with associated measure µ.
Further assume that p has a controlled Sobolev norm ∥p∥Hℓ(M) for some ℓ ≥ 2. Assume that K
is a kernel of order larger than ℓ (in the sense of Definition 3.7.1). Let (Xt)t≥0 be a diffusion
with generator A satisfying Assumption 4. Let T ≥ 2 and let 0 < h ≤ h0 and assume that
Thd ≥ c ln(T ), where h0, c are the constants from Theorem 3.2.2. Then,

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µ)
]
≤ 2 c1

∥p∥2
Hℓ(M)

p2min

h2ℓ+2 + 2 c0
uAp

2
max

p2min

∥K∥2∞
h4−d

T
(3.18)

where c0 is the constant from Theorem 3.2.2 and c1 is the constant in (3.17). In particular, for
h of order T−1/(2ℓ+d−2), it holds that

sup
x∈M

Ex
[
W2

2 (µ̂T,h, µ)
]
≲ T− 2ℓ+2

2ℓ+d−2 . (3.19)

The results of Theorem 3.2.2 and Corollary 3.2.3 are non-asymptotic results. It is a remarkable
fact that the constants in the previous corollary only depend on the generator A through the
uniform ellipticity constant κmin and the ultracontractivity constant uA. From a statistical
perspective, this implies that the knowledge of the exact SDE satisfied by the sample path
(Xt)t∈[0,T ] is not needed to estimate the invariant measure µ. Only an a priori estimate on the
uniform ellipticity constant κmin of the generator A of the sample path and its ultracontractivity
constant uA have to be known. For instance, the same reconstruction method will apply for
estimating a sample path with either of the generators L or Apq for q = p/2 mentioned in the
introduction.
Comparing with the results of Wang and Zhu in [121] for the operator L, we note that for

d ≥ 5, the rate T− 2ℓ+2
2ℓ+d−2 is faster than the rate of T− 2

d−2 that they obtained for the occupation
measure µT , see (3.4). Actually, our results allow us to recover their rate of convergence, for
any generator A satisfying Assumption 4.

Corollary 3.2.4. Let d ≥ 1 and p be a positive density function of class C2. Let (Xt)t≥0 be a
diffusion with generator A satisfying Assumption 4. Then, for all T ≥ 2,

sup
x∈M

Ex
[
W2

2 (µT , µ)
]
≤ c0

(
1 +

uAp
2
max

p2min

)
T−1 when d ≤ 3

T−1 ln(1 + T ) when d = 4

T− 2
d−2 when d ≥ 5,

(3.20)

for some constant c0 depending on M.
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Proof. LetK be a nonnegative Lipschitz-continuous kernel supported in [0, 1] with
∫

Rd K(∥u∥)du =
1. As K is positive, µT,h is always a probability measure, so that µ̂T,h = µT,h. For any prob-
ability measure ν, we define its convolution νh by Kh as in (3.15). We prove in Lemma 3.8.3
that for any measure ν and h > 0 small enough, W2

2 (νh, ν) ≤ c∥K∥∞h2 for some constant c.
Hence, both W2

2 (µT , µT,h) and W2
2 (µ, µh) are of order h2. Then,

Ex
[
W2

2 (µT , µ)
]
≤ 4Ex

[
W2

2 (µT , µT,h)
]
+ 4Ex

[
W2

2 (µT,h, µh)
]
+ 4W2

2 (µh, µ)

≤ 8c∥K∥∞h2 + 4Ex
[
W2

2 (µT,h, µh)
]
.

We pick h = T−1/(d−2) for d ≥ 5 and h = T−1/2 for d ≤ 4 and apply Theorem 3.2.2 to
conclude.

Finally, we address the optimality of our statistical procedure using minimax theory. Consider
a class PT of probability distributions of diffusion processes (Xt)t∈[0,T ]. For PT ∈ PT , we let
µ(PT ) be the invariant measure of the diffusion process (Xt)t≥0 whose restriction to [0, T ] has
distribution PT . The associated minimax rate of convergence is defined as

R(PT ) = inf
µ̂

sup
PT∈PT

EPT
[W2(µ̂, µ(PT ))], (3.21)

where the infimum is taken over all estimators µ̂, i.e. measurable functions of the observation
(Xt)t∈[0,T ], and where the expectation is over processes (Xt)t∈[0,T ] distributed as PT . To put
it another way, the minimax rate is the best risk an estimator can attain for the problem of
estimating the invariant measure of some diffusion process (Xt)t∈[0,T ] whose distribution lies in
PT .
For parameters ℓ ≥ 2, κmin, pmin, pmax, umax, L > 0, we consider the statistical model PT,ℓ =
PT,ℓ(κmin, pmin, pmax, umax, L) consisting of all the distribution of diffusion processes (Xt)t∈[0,T ]
on M with arbitrary initial distribution, generator A satisfying Assumption 4 with constant
κmin and ultracontractivity constant uA smaller than umax, and whose invariant measure µ has a
C2 density p on M with ∥p∥Hℓ(M) ≤ L and ∥p∥C1(M) ≤ L, satisfying pmin ≤ p ≤ pmax. Remark

that the kernel density estimator µ̂T,h attains (for d ≥ 5) the rate of convergence T− ℓ+1
2ℓ+d−2

uniformly on the class PT,ℓ. Hence, the minimax rate satisfies R(PT,ℓ) ≲ T− ℓ+1
2ℓ+d−2 . The next

proposition, proved in Section 3.6, states that this rate cannot be improved.

Proposition 3.2.5. Let ℓ ≥ 2 be an integer. Then, for κmin, pmin small enough and pmax,
umax, L large enough,

R(PT,ℓ) ≳

{
T−1/2 if d ≤ 4

T− ℓ+1
2ℓ+d−2 if d ≥ 5.

(3.22)

For d ≥ 5, these rates match with the rates obtained by our kernel-based estimator µ̂T,h,
whereas for d ≤ 4, the empirical estimator µT attains the minimax rate (up to logarithmic
factors), according to the results of Wang and Zhu [121] for the Langevin generator L, or
according to Corollary 3.2.4 for a general generator A.

Remark 3.2.6. The estimator µ̂T,h has a density with respect to the volume measure dx on
M. As a consequence, computing µ̂T,h requires the knowledge of the manifold M, prohibiting
the use of this method in the situation where the manifold M is unknown. However, we expect
that similar methods to the ones developed in [37] will allow us to create an estimator v̂olM
of the volume measure. Such an estimator of the volume measure is based on a patch-based
reconstruction of the underlying manifold M developed by Aamari and Levrard [4]. Guarantees
for this method are only known in the case of i.i.d. samples, although we believe that the results
of [4] could be adapted to the setting of this paper, where a diffusion path is observed. Such an
estimator of the volume measure could then be used through a plug-in method to design a new
estimator µ̃T,h that would not require the knowledge of the manifold M.
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3.3 Preliminaries

We detail in this section some tools, notation, and general results on elliptic operators on
compact manifolds. Recall that M is a smooth compact d-dimensional connected Riemannian
manifold without boundary.

3.3.1 The Laplace-Beltrami operator

Recall that by Green’s theorem, the Laplace-Beltrami operator is symmetric, with for all f, g ∈
C2(M), ∫

M
(∆f)gdx = −

∫
M

⟨∇f,∇g⟩ dx =

∫
M
f(∆g)dx. (3.23)

The operator ∆ defines an essentially self-adjoint operator over L2(dx) with a discrete spectrum
(see e.g. [26, Chapter I, Section 3]). We denote by

0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · ·

the eigenvalues of (−∆), and by (ϕi)i≥0 the respective eigenfunctions of ∆ (note that they are
of class C∞ on M). The first eigenfunction ϕ0 is constant and the family (ϕi)i≥0 forms a Hilbert
basis of L2(dx): for any f ∈ L2(dx),

f =
+∞∑
i=0

βiϕi, with βi =

∫
M
fϕidx.

The first nonzero eigenvalue λ1 is of particular importance and is called the spectral gap.

The inverse operator ∆−1 is defined on L2
0(dx) :=

{
f ∈ L2(dx) :

∫
M fdx = 0

}
by

∆−1(f) := −
∞∑
i=1

βi
λi
ϕi. (3.24)

We introduce the operator (−∆)−1/2 defined for f ∈ L2
0(dx) by

(−∆)−1/2(f) :=
∞∑
i=1

βi√
λi
ϕi.

3.3.2 Green function of the Laplace Beltrami operator

The Green function G of ∆ is a linear bounded operator G : L2(dx) → L2(dx) which is, in some
sense, an inverse of ∆ in L1(dx).

Proposition 3.3.1 (See Appendix A in [7], or Theorem 4.13 in [11]). We define diag(M) =
{(x, x) : x ∈ M}. There exists a unique continuous function G ∈ C∞(M×M\ diag(M)),
which has the following properties

(i) ∀x ∈ M, G(x, ·) ∈ L1(dx) with

∫
M
G(x, ·)dx = 0;

(ii) G is symmetric : ∀(x, y) ∈ M2 \ diag(M), G(x, y) = G(y, x);

(iii) ∀f ∈ C2(M),∀x ∈ M, we have∫
M
G(x, y)∆f(y)dy = f(x)−

∫
M
f(y)dy;
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(iv) there exists a constant κ > 0 such that ∀(x, y) ∈ M2 \ diag(M),

|G(x, y)| ≤ κ


1 when d = 1,

1 + |ln ρ(x, y)| when d = 2, and

ρ(x, y)2−d when d ≥ 3.

The function G is called the Green function of the operator ∆ and it naturally defines an operator
from L2(dx) to L2(dx), which is also denoted by G, as follows: ∀f ∈ L2(dx), ∀x ∈ M,

(Gf)(x) :=

∫
M
G(x, y)f(y)dy. (3.25)

From Proposition 3.3.1 (iii) and (3.25), we remark that for f ∈ L2
0(dx) we have

Gf = ∆−1(f).

The Green function will play a central role to control the variance of µ̂T,h, in particular through
the following lemma, which controls the behavior of Gf for a function f localized on a small
ball.

Lemma 3.3.2. Let h > 0 sufficiently small. For any (x, z) ∈ M2, any continuous function
f with support in the ball B(x, h), there exist constants κ1, κ2 > 0 depending only on M such
that:

• when d = 1, |(Gf)(z)| ≤ κ1∥f∥∞h,

• when d = 2, |(Gf)(z)| ≤ κ1∥f∥∞h2(1 + ln |h|),

• when d ≥ 3,

|(Gf)(z)| ≤ κ1∥f∥∞h
2 when ρ(x, z) ≤ 2h,

|(Gf)(z)| ≤ κ2∥f∥∞h
dρ(x, z)2−d when ρ(x, z) > 2h.

The proof, given in Appendix 3.8.3, uses the Riemannian normal parametrization of the manifold
M.

3.3.3 The elliptic operator A

Consider an elliptic operator A on M satisfying Assumption 4. As mentioned previously, using
the carré du champ Γ defined by (3.7), A satisfies a Green’s formula (3.8). Furthermore,
as a uniformly elliptic operator of second order on a compact manifold without boundary,
symmetric with respect to the measure µ, the operator A is essentially self-adjoint with respect
to L2(µ), and its spectrum is discrete (see e.g. [44, Chapter 6] or Theorem 1.5.39 of Chapter
1). Consequently, there exist functions (ψi)i∈N and a sequence of real numbers 0 = γ0 < γ1 ≤
γ2 ≤ · · · such that

(i) for each i, ψi is an eigenfunction of −A associated to the eigenvalue γi (counted with
multiplicity);

(ii) (ψi)i∈N is an orthonormal basis of L2(µ).

Let L2
0(µ) :=

{
f ∈ L2(µ) :

∫
M fdµ = 0

}
. As for the Laplace-Beltrami operator, we introduce

the operators A−1 and (−A)−1/2 defined for f ∈ L2
0(µ) by

A−1(f) := −
∞∑
i=1

αi
γi
ψi and (−A)−1/2(f) :=

∞∑
i=1

αi√
γi
ψi, (3.26)
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with αi =
∫
M fψidµ. At last, we denote by (Pt)t≥0 the semigroup of a diffusion process (Xt)t≥0

with generator A. Then, for f ∈ L2(µ), f =
∑

i≥0 αiψi with αi =
∫
M fψidµ, we have

∀x ∈ M, Ptf(x) = Ex[f(Xt)] =
∞∑
i=0

e−γitαiψi(x).

This result is a consequence of the Dynkin formula [76], which implies that for any function f
in the domain of A

∀x ∈ M, Ptf(x) = Ex[f(Xt)] = f(x) +

∫ t

0
PsAf(x)ds.

We now give a Poincaré inequality for the general operator A.

Proposition 3.3.3. (Poincaré’s inequality for A) For any f ∈ C2(M) such that
∫
M fdµ = 0,∫

M
−fAfdµ ≥ pminκmin

pmax
λ1

∫
M
f2dµ,

where λ1 is the spectral gap of ∆, and κmin is defined in (3.10).

Proof. By the symmetry of A, Equation (3.10) and the Poincaré’s inequality of ∆, we have:

∫
M

−fAfdµ =

∫
M

Γ(f, f)dµ ≥ pminκmin

∫
M

|∇f |2dx ≥ pminκminλ1

∫
M
(f − f)2dx

≥ pminκmin

pmax
λ1

∫
M
(f − f)2dµ ≥ pminκmin

pmax
λ1

∫
M
f2dµ,

where f :=
∫
M fdx. We develop the square and use that that

∫
M fdµ = 0 to obtain the

conclusion.

Remark 3.3.4. The elliptic operators Apq and L defined in Section 3.1 are essentially Laplace
operators. Indeed, the operator L is a weighted Laplacian with weight µ(dx) = p(x)dx as defined
in [59, Section 3.6], while the operator Apq is a weighted Laplacian on a weighted manifold, i.e.
a manifold M with a new Riemannian metric depending on the weight q, see Section 3.6 and
Exercise 3.11 in [59].

3.4 Variance term for the stationary process

Before proving Theorem 3.2.2, we state a simpler version of the theorem, where the initial
measure δx for the sample path (Xt) is replaced by the invariant measure µ. For such a choice,
it holds that for all y ∈ M,

Eµ[pT,h(y)] =
∫
M
Kh(z, y)p(z)dz = ph(y). (3.27)

We will then explain in Section 3.5 how we can extend the result to any initial distribution µ0
using the ultracontractivity of the semi-group (Pt)t≥0.

Proposition 3.4.1. Let d ≥ 1 and p be a positive C2 density function with associated measure
µ. Let (Xt)t≥0 be a diffusion with generator A satisfying Assumption 4. Let 0 < h ≤ h0 for
some constant h0 depending on M and K. Assume that either K is nonnegative or that d ≥ 4
and that Thd−2 ≥ c ln(T ) (in which case, h0 additionally depends on pmin and on the C1-norm
of p). Then,

Eµ
[
W2

2 (µ̂T,h, µh)
]
≤ c0

p2max

p2min

∥K∥2∞


h4−d

T if d ≥ 5
ln(1/h)
T if d = 4

1
T if d ≤ 3,

(3.28)

where c0 depends on M, and c depends on M, K, pmin, pmax and κmin.
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The main difference between Proposition 3.4.1 and Theorem 3.2.2 is the choice of the initial
measure, which is of the form δx for Theorem 3.2.2 and is equal to µ in Proposition 3.4.1. As for
any distribution µ0 and random variable U , Eµ0 [U ] =

∫
Ex[U ]dµ0(x), Theorem 3.2.2 is stronger,

and implies that the convergence holds for any initial measure µ0.
The remainder of this section is dedicated to proving Proposition 3.4.1. We first state some
useful properties on Kh. The following lemma is stated in [37, Lemma 10] under stronger
regularity hypotheses on the kernel K. We can relax these assumptions and a proof is given in
Appendix 3.8.1. The first point of the lemma guarantees that Kh is well defined on M2 for h
small enough.

Lemma 3.4.2. Assume that K is a continuous function on R with support in [0, 1], such that∫
Rd K(∥z∥)dz = 1. Let h > 0, and consider Kh defined by (3.11) with the renormalizing factor
ηh. Then,

(i) h−dηh converges to 1 uniformly on M;

(ii) ∀x ∈ M,

∫
M
Kh(x, y)dy = 1;

(ii) there exists hc > 0, depending on M and K, such that for all h < hc, Kh is bounded on
M×M with ∥Kh∥∞ ≤ 2∥K∥∞h−d;

(iv) if furthermore K is Lipschitz continuous, then for all h < hc, and all x ∈ M, y 7→ Kh(x, y)
is Lipschitz continuous with constant 2Lip(K)h−d−1, where Lip(K) is the Lipschitz con-
stant of K.

We also require the following elementary convergence result, proved in Appendix 3.8.2.

Lemma 3.4.3. Let ph be defined by (3.15) for h > 0. Under the assumptions of Lemma 3.4.2,
when h goes to 0, (ph)h>0 converges to p uniformly on M. Moreover, there exists hc depending
on M, K, pmin and the C1-norm of p such that for all 0 < h ≤ hc, infy∈M ph(y) ≥ pmin

2 and
supy∈M ph(y) ≤ 2pmax.

Hence, for h small enough, µh is indeed a probability measure. Recall that the function K is a
signed kernel, so that µT,h is a priori a signed measure. We introduce the event ET,h defined by

ET,h = {pT,h ≥ 0}. (3.29)

On this event, we have µ̂T,h = µT,h and we notice that for 0 < h < hc,

Eµ
[
W2

2 (µ̂T,h, µh)
]
≤ Eµ

[
W2

2 (µT,h, µh)1ET,h

]
+ diam(M)2Pµ(E

c
T,h), (3.30)

where diam(M) is the diameter of M. Of course, when K is nonnegative, pT,h is also nonneg-
ative, so that in that case, the event ET,h is satisfied for all h > 0.
To prove Proposition 3.4.1, we will need several intermediate results related to the spectral
decompositions of the operator ∆, A, and their inverses. We first recall a useful result given
by Peyre [96, Corollary 2.3] (see also [106, Section 5.5.2] on the negative Sobolev norm), which
links the Wasserstein distance to the inverse Laplace operator. Let us remind that the inverse
operator ∆−1 is defined on L2

0(dx) =
{
f ∈ L2(dx) :

∫
M fdx = 0

}
(see Section 3.3.2).

Lemma 3.4.4. Let f1, f2 ∈ L2(dx) be two probability density functions with respect to the
volume measure dx, with f1 lower bounded by some positive constant fmin > 0. Then, we have

W2
2 (f1dx, f2dx) ≤

4

fmin

∫
M

∣∣∣(−∆)−1/2(f1 − f2)
∣∣∣2dx. (3.31)

Besides, ellipticity yields the following relation between the general operator A and the Laplace-
Beltrami operator ∆.
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Lemma 3.4.5. For any function f ∈ L2
0(µ), we have∫

M

∣∣∣(−A)−1/2f
∣∣∣2dµ ≤ 1

pminκmin

∫
M

∣∣∣(−∆)−1/2(fp)
∣∣∣2dx.

Proof. From Equation (3.8),∫
M

Γ(A−1f,A−1f)dµ =

∫
M
f
(
−A−1

)
fdµ =

∫
M

∣∣∣(−A)−1/2f
∣∣∣2dµ.

Besides, since A−1f ∈ L2(µ) and since C1(M) is dense in this space,√∫
M

Γ(A−1f,A−1f)dµ

≤ sup
{∫

M
Γ(−A−1f, g)dµ : g ∈ C1(M) such that

∫
M

Γ(g, g)dµ ≤ 1
}

=sup
{∫

M
fgdµ : g ∈ C1(M) such that

∫
M

Γ(g, g)dµ ≤ 1
}
.

Then, because the simple fact that the supremum of a given set is always bigger than the
supremum on any subset, and using (3.10), we have√∫

M
Γ(A−1f,A−1f)dµ

≤ sup
{∫

M
(fp)gdx : g ∈ C1(M) such that

∫
M

|∇g|2pminκmindx ≤ 1
}

=(pminκmin)
−1/2 sup

{∫
M
(fp)gdx : g ∈ C1(M) such that

∫
M

|∇g|2dx ≤ 1
}
.

Besides, using Green’s theorem, we have that for all g ∈ C1(M)∫
M
(fp)gdx =

∫
M
g∆(∆−1)(fp)dx = −

∫
M

〈
∇(∆−1)(fp),∇g

〉
dx.

Hence, by Hölder’s inequality, we conclude that:√∫
M

Γ((A−1)f, (A−1)f)dµ ≤ (pminκmin)
−1/2

√∫
M

∣∣(−∆)−1/2(fp)
∣∣2dx.

The following standard result is crucial: it bounds the variance of the random variable µT (f)
for some function f in terms of the generator A.

Lemma 3.4.6. Let (Xt)t≥0 be a diffusion with generator A, starting from its invariant measure
µ. We have for any f ∈ L2

0(µ),

Eµ

[(
1

T

∫ T

0
f(Xs)ds

)2
]
≤ 2

T

∫
M

∣∣∣(−A)−1/2f
∣∣∣2dµ.

Proof. Recall that (γi)i≥0 are the eigenvalues of −A, with 0 = γ0 < γ1 ≤ γ2 ≤ · · · , and (ψi)i≥0

their respective eigenfunctions. We also remind the reader that (Pt)t≥0 denotes the semigroup
of a process (Xt)t≥0 with generator A (see Section 3.3.3).
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Since f ∈ L2
0(µ), we write f =

∞∑
i=1

αiψi with αi =
∫
M fψidµ, and α0 = 0. By the Markov

property, denoting by (Ft)t≥0 the natural filtration of the process (Xt)t≥0, we have

Eµ

[(
1

T

∫ T

0
f(Xs)ds

)2
]
=

2

T 2
Eµ

[∫ T

0

∫ T

s
f(Xt)f(Xs)dtds

]
=

2

T 2

∫ T

0

∫ T

s
Eµ[E[f(Xt)|Fs]f(Xs)]dtds

=
2

T 2

∫ T

0

∫ T

s
Eµ[Pt−sf(Xs)f(Xs)]dtds.

By assumption, the distribution of Xt is µ for any t ≥ 0, and computing the expectation using
the link between the semigroup (Pt)t≥0 and the generator A of the process, we then obtain

Eµ

[(
1

T

∫ T

0
f(Xs)ds

)2
]
=

2

T 2

∞∑
i=1

α2
i

∫ T

0

∫ T

s
e−γi(t−s)dtds

≤ 2

T

∞∑
i=1

α2
i

γi
.

The lemma is then proved by definition of (−A)−1/2 given by Equation (3.26).

3.4.1 Estimation of the probability Pµ(E
c
T,h)

Recall the definition of the event ET,h = {pT,h ≥ 0}. In view of (3.30), we need to bound
the probability Pµ(E

c
T,h). If the kernel K is nonnegative, then pT,h ≥ 0 and Pµ(E

c
T,h) = 0.

Otherwise, when K is signed, we will use that

Pµ(E
c
T,h) ≤ Pµ

(
inf
y∈M

pT,h(y) < pmin/8

)
, (3.32)

and provide a bound for the right-hand side of the inequality.

From Lemma 3.4.3, and in what follows, we choose 0 < h ≤ hc so that pmin/2 ≤ ph ≤ 2pmax.

Proposition 3.4.7. Assume that d ≥ 4. There exist c0 depending on M, K, pmin, pmax and
κmin, and h0 depending on M, K, pmin and the C1-norm of p such that for any T > 0 and
y ∈ M, when 0 < h ≤ h0, we have

Pµ(pT,h(y) < pmin/4) ≤ exp
(
−c0Thd−2

)
.

Proof. Let y ∈ M be fixed. We first start with a pointwise concentration bound for pT,h(y)
around its expectation ph(y). We apply the Bernstein’s bound obtained in [49, Theorem 3.5] to
the function g(x) := −Kh(x, y) + ph(y), with Φ(u) = Ψ(u) = u2/2 (using the notation of [49]).
Note that

∫
M gdµ = 0. Write a+ = max(a, 0) for a ∈ R. Let M = ∥g+∥L2(µ) and

σ2 = lim
T→+∞

1

T
Varµ

(∫ T

0
g(Xs)ds

)
.

Then, using Poincaré’s inequality for A given in Proposition 3.3.3, it holds that

Pµ(pT,h(y)− ph(y) < −pmin/4) ≤ exp

(
− Tp2min

32(σ2 +Mpmax/(4κminλ1))

)
. (3.33)
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We first bound M . As
∫
M gdµ = 0, and by assumption on the kernel K, we deduce

M2 ≤
∫

(Kh(x, y)− ph(y))
2µ(dx) =

∫
Kh(x, y)

2µ(dx)− ph(y)
2 ⩽

∫
Kh(x, y)

2µ(dx)

≤ pmax∥Kh∥2∞
∫
∥x−y∥≤h

dx ≤ 4pmax∥K∥2∞h−2dc1h
d,

where we use the fact the geodesic distance is equivalent to the Euclidean distance (see [51,
Proposition 2]), Lemma 3.8.2, and Lemma 3.4.2-(iii). Hence, M ≤ c2∥K∥∞

√
pmaxh

−d/2 for h
small enough.
We then bound σ2: according to Lemma 3.4.5 and Lemma 3.4.6, and introducing the Green
operator G defined in (3.25),

σ2 ≤ 2

pminκmin

∫
M

|(−∆)−1/2(gp)|2dx

=
2

pminκmin

∫
M
gpG(gp)dx

≤ 2

pminκmin

(
pmax∥g∥∞

∫
∥x−y∥≤h

|G(gp)(x)|dx+ 4p3max

∫
∥x−y∥≥h

|G(p)(x)|dx

)
,

because g(x) = ph(y) on {∥x− y∥ ≥ h} and ph ≤ 2pmax. It remains to bound the right-hand
side. First, according to Lemma 3.4.2 and Lemma 3.4.3, ∥g∥∞ ≤ 2pmax + 2∥K∥∞h−d ≤ c3h

−d

for h ≤ 1. Second, |G(gp)(x)| ≤ |G(Kh(·, y)p)(x)|+ ph(y)|G(p)(x)|, with

|G(p)(x)| ≤ pmax

∫
M

|G(x, z)|dz ≤ pmaxc4

according to Proposition 3.3.1-(iv) and Lemma 3.8.2. Then, using again the equivalence between
the geodesic and the Euclidean distances, as the function Kh(·, y)p is supported on a geodesic
ball B(y, c5h), according to Lemma 3.3.2 and Lemma 3.4.2-(iii), for all x ∈ B(y, c5h),

|G(Kh(·, y)p)(x)| ≤ κ1∥Kh(·, y)p∥∞h2 ≤ 2κ1pmax∥K∥∞h2−d.

In total, as
∫
∥x−y∥≤h dx ≤ c6h

d according to Lemma 3.8.2 and by assumption vol(M) = 1, it
holds that for h ≤ 1,

σ2 ≤ 2p2max

pminκmin

(
2c3c5

(
κ1∥K∥∞h

2−d + pmaxc4

)
+ 4p2maxc4

)
≤ c8h

2−d.

As d ≥ 4, M is smaller than c2∥K∥∞
√
pmaxh

2−d. As ph(y) ≥ pmin/2 for h ≤ hc, we have
Pµ(pT,h(y) < pmin/4) ≤ Pµ(pT,h(y)− ph(y) < −pmin/4) for such a value of h. We therefore
obtain the desired result.

We then conclude with a standard union bound argument by using a covering of M.

Proposition 3.4.8. Assume that d ≥ 4. There exists h0 depending on M, K, pmin and the
C1-norm of p such that for any T > 0 and 0 < h ≤ h0, we have

Pµ

(
inf
y∈M

pT,h(y) < pmin/8

)
≤ c1h

−d(d+1) exp
(
−c0Thd−2

)
for some constant c1 depending only on pmin, K and M, where c0 is the constant of Proposi-
tion 3.4.7.
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Proof. To have a uniform estimation of pT,h, we will make use of the Lipschitz continuity of K
and the covering number Nδ(M) of M, for δ > 0, i.e. the smallest number N such that there
exists a subset E of N distinct points of M such that maxy∈Mminx∈E ρ(x, y) ≤ δ.
By Lemma 3.4.2, the function pT,h is Lipschitz continuous with constant 2Lip(K)h−d−1 as an
average of Lipschitz continuous functions. Let δ > 0. We consider the covering number Nδ(M)
of M. By [60, 2.2A], there are constants cM and δM depending only on M such that for all
0 < δ ≤ δM,

Nδ(M) ≤ cMδ−d. (3.34)

Consequently, for h ≤ h0 (where h0 is the constant of Proposition 3.4.7), if y1, . . . , yNδ
is a

minimal δ-covering of M,

Pµ

(
inf
y∈M

pT,h(y) < pmin/8

)
≤

Nδ(M)∑
i=1

Pµ(∃y ∈ B(yi, δ) : pT,h(y) < pmin/8)

≤
Nδ(M)∑
i=1

Pµ

(
pT,h(yi) < pmin/8 + 2Lip(K)h−d−1δ

)
.

Choose δ = pminh
d+1

16Lip(K) , which is smaller than δM as long as h is small enough with respect to M
and K, as pmin ≤ 1. By Proposition 3.4.7 and Equation (3.34), we easily deduce

Pµ( inf
y∈M

pT,h(y) < pmin/8) ≤ cK,Mp−dminh
−d(d+1) exp

(
−c0Thd−2

)
,

and the result is proved.

3.4.2 Proof of Proposition 3.4.1

We first give a last useful result related to the diffusion (Xt)t≥0 with generator A in relation
with the operators.

Notation. Given a space E, for any function f : E ×E → R and any operator J : D ⊂ RE →
RE , we define J1f when the operator is applied to the first variable of f and J2f when it is
applied to the second variable of f :

J1f(x, y) := (J f(., y))(x) and J2f(x, y) := (J f(x, .))(y).

Proposition 3.4.9. Let R ∈ L2(µ⊗ dy) be a function such that for all (x, y) ∈ M2, R(x, ·) ∈
L2
0(dy) and R(·, y) ∈ L2

0(µ) . Then, when the initial distribution of the diffusion (Xt)t≥0 is its
invariant measure µ, we have

Eµ

[∫
M

∣∣∣∣(−∆)−1/2

(
1

T

∫ T

0
R(Xs, ·)ds

)∣∣∣∣2dy
]
≤ 2

T

∫∫
M2

∣∣∣(−A)
−1/2
1 (−∆)

−1/2
2 R

∣∣∣2dµdy.
Proof. Denote by R̂ the function (−∆)

−1/2
2 R. We observe that R̂ ∈ L2(µ⊗ dy) and for any y,

R̂(·, y) ∈ L2
0(µ). Hence, by applying Lemma 3.4.6, we have the following sequence of equalities:

Eµ

[∫
M

∣∣∣∣(−∆)−1/2

(
1

T

∫ T

0
R(Xs, ·)ds

)∣∣∣∣2dy
]
= Eµ

[∫
M

∣∣∣∣ 1T
∫ T

0
(−∆)−1/2R(Xs, ·)ds

∣∣∣∣2dy
]

=

∫
M

Eµ

[∣∣∣∣ 1T
∫ T

0
R̂(Xs, y)ds

∣∣∣∣2
]
dy ≤ 2

T

∫
M

(∫
M

∣∣∣(−A)
−1/2
1 R̂

∣∣∣2dµ)dy.
Therefore, the proposition is proved.
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Using the decomposition (3.30), we can now prove Proposition 3.4.1. We first use the estimate
of the probability of EcT,h given in Proposition 3.4.8, and then give an explicit estimate of the
variance term on the event ET,h for a diffusion (Xt)t≥0 with generator A starting from its
invariant measure µ.

Proof of Proposition 3.4.1.

According to (3.32) and Proposition 3.4.8, the probability of the event EcT,h is negligible. Indeed,

when Thd−2 > d2+4
c0

ln(T ) and d ≥ 4, for T large enough the second term in the decomposition

(3.30) is smaller than p2max

p2min
∥K∥2∞h4−dT−1. Furthermore, it is equal to 0 when K is nonnegative.

It remains to bound the first term.

On the event ET,h, both µh and µT,h are probability measures with respective density functions
pT,h and ph. Furthermore, for h < hc, ph ≥ pmin/2. Hence, by Lemma 3.4.4, we have:

W2
2 (pT,h, ph) ≤

8

pmin

∫
M

∣∣∣(−∆)−1/2(pT,h − ph)
∣∣∣2dx. (3.35)

Now, consider the function Rh(x, y) = Kh(x, y)−
∫
MKh(z, y)dµ(z). First, we observe that

pT,h(y)− ph(y) =
1

T

∫ T

0
Rh(Xs, y)ds.

As Rh is continuous on a compact manifold M, we have Rh ∈ L2(µ ⊗ dy). Thus, for each
x, y ∈ M, Rh(x, ·) ∈ L2

0(dy) and Rh(·, y) ∈ L2
0(µ). Therefore, due to Proposition 3.4.9,

Eµ

[∫
M

∣∣∣(−∆)−1/2(pT,h − ph)
∣∣∣2dy] ≤ 2

T

∫∫
M2

∣∣∣(−A)
−1/2
1 (−∆)

−1/2
2 Rh

∣∣∣2dµdy. (3.36)

Besides, by Lemma 3.4.5, we have:∫∫
M2

∣∣∣(−A)
−1/2
1 (−∆)

−1/2
2 Rh

∣∣∣2dµdy ≤ 1

pminκmin

∫∫
M2

∣∣∣(−∆)
−1/2
1 (Mp)1(−∆)

−1/2
2 Rh

∣∣∣2dxdy,
(3.37)

where Mp : L
2
0(µ) → L2

0(dx) is the bounded multiplication operator f 7→ pf .
Therefore, after Inequalities (3.35), (3.36), (3.37), we have:

Eµ
[
W2(µT,h, µh)

21ET,h

]
≤ 8

p2minκminT

∫∫
M2

∣∣∣(−∆)
−1/2
1 (Mp)1(−∆)

−1/2
2 Rh

∣∣∣2dxdy.
Note that Mp and ∆−1/2 are bounded operators, which implies (Mp)1 and (∆−1/2)2 are com-

mutative. In other words, (Mp)1(−∆)
−1/2
2 Rh = (−∆)

−1/2
2 (Mp)1Rh, which means

Eµ
[
W2

2 (µT,h, µh)1ET,h

]
≤ 8

p2minκminT

∫∫
M2

∣∣∣(−∆)
−1/2
1 (−∆)

−1/2
2 Sh

∣∣∣2dxdy,
where Sh(x, y) = p(x)Rh(x, y) ∈ L2(dx⊗ dy).

Recall that (λi)i≥0 and (ϕi)i≥0 are respectively the eigenvalues and the eigenfunctions of (−∆).
As p is upper bounded, ∀x ∈ M Sh(x, .) ∈ L2

0(dy), ∀y ∈ M Sh(., y) ∈ L2
0(dx) and Sh ∈

L2
0(dx⊗ dy). Thus, there are (αi,j(h))i,j≥0 such that Sh has the following decomposition (with

αi,0 = α0,j = 0): for all x, y ∈ M

Sh(x, y) =
∑
i,j≥1

αij(h)ϕi(x)ϕj(y),
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with αij(h) =
∫∫

M2 Sh(x, y)ϕi(x)ϕj(y)dxdy. Consequently, for all x, y ∈ M

(−∆)
−1/2
1 (−∆)

−1/2
2 Sh(x, y) =

∑
i,j≥1

αij(h)√
λiλj

ϕi(x)ϕj(y),

(−∆)−1
1 Sh(x, y) =

∑
i,j≥1

αij(h)

λi
ϕi(x)ϕj(y),

(−∆)−1
2 Sh(x, y) =

∑
i,j≥1

αij(h)

λj
ϕi(x)ϕj(y).

Therefore, ∫∫
M2

∣∣∣(−∆)
−1/2
1 (−∆)

−1/2
2 Sh

∣∣∣2dxdy =
∑
i,j≥1

α2
ij(h)

λiλj

=

∫∫
M2

(∆−1
1 Sh)(∆

−1
2 Sh)dxdy =

∫∫
M2

(G1Sh)(x, y)(G2Sh)(x, y)dxdy,

where G is the Green function of ∆ introduced in Section 3.3.2.
Let d ≥ 5. Using the fact that K has compact support and that the geodesic and Euclidean
distances are equivalent, the functions x 7→ Kh(x, y) and y 7→ Kh(x, y) are supported on a
geodesic ball of radius c1h for some c1 > 0 depending only on M. Hence, Lemma 3.3.2 implies
that for h sufficiently small and for all x ∈ M,∫

M
|G1Sh(x, y)G2Sh(x, y)|dy

≤ c2∥Sh∥2∞

(
h4
∫
B(x,2c1h)

dy + h2d
∫
M\B(x,2c1h)

ρ(x, y)4−2ddy

)

≤ 4c2p
2
max∥Kh∥2∞

(
h4
∫
B(x,2h)

dy + h2d
∫
M\B(x,2h)

ρ(x, y)4−2ddy

)
≤ c3p

2
max∥K∥2∞h−2d

(
h4+d + h2dh4−d

)
≤ 2c3p

2
max∥K∥2∞h−2d × h4+d,

where we also use Lemma 3.8.2 and Lemma 3.4.2. This proves the proposition when d ≥ 5.
The computations for d ≤ 4 are similar, and left to the reader.

3.5 Transition to a general initial measure

In the previous section, we have obtained a control of the variance term W2
2 (µ̂T,h, µh) when the

stochastic process (Xt)t≥0 starts from its invariant measure µ. In this section, we explain how
to extend the result to an initial measure of type Dirac measure δx (which will imply the result
for any initial measure). The main idea is to use the ultracontractivity of the diffusion (Xt)t≥0.
Let us first introduce this notion.

Lemma 3.5.1. [120, Theorem 3.5.5.] The semigroup (Pt) associated to the operator A is
ultracontractive. In other words, for each t > 0, there is a minimal positive value ct > 0, such
that for any bounded measurable function f , we have

∥Ptf∥∞ ≤ ct∥f∥L1(µ). (3.38)

In Section 3.8.5, an explicit form of the ultracontractivity term ct is given. We denote by
uA = c1 the ultracontractivity constant at time t = 1.
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Remark 3.5.2. Wang only considers operators of the form ∆ + ∇p in [120]. However, as
explained in Remark 3.3.4 (see Section 3.8.5 for more details), for any C2 second order elliptic
differential operator A on a smooth manifold M such that A is symmetric with respect to the
measure µ(dx) = p(x)dx, there is always a C2-Riemannian metric g̃ on M such that A =
∆̃ + ∇̃p, where ∆̃ and ∇̃ are respectively the Laplacian and the gradient operator of (M, g̃).
Hence, [120, Theorem 3.5.5.] can readily be applied.

Remark 3.5.3. In [120], Wang actually defines the ultra-contractivity of a semigroup (Pt)t≥0

in a slightly different way: for any t > 0, there should exist ct > 0 such that for any measurable
bounded function f , ∥Ptf∥∞ ≤ ct∥f∥L2(µ). However, Wang’s definition implies (3.38) in our
setting with M compact. Assume that (Pt)t≥0 is ultra-contractive in Wang’s sense, then for
t > 0 and for any measurable bounded function f ,

∥Ptf∥∞ ≤ ct/2
∥∥Pt/2f∥∥L2(µ)

≤
(
ct/2
)2∥f∥L1(µ)

because ∥T∥2→∞ = ∥T∥1→2 for a symmetric operator T .

We now use the ultracontractivity constant uA to control the distance Ex
[
W2

2 (µ̂T,h, µ)
]
.

Proposition 3.5.4. Let x ∈ M. There exist constants c, h0 depending only on M, and on M
and K respectively such that for any x ∈ M and any T > 1, and any h ≤ h0, we have that:

Ex
[
W2

2 (µ̂T,h, µ)
]
≤ c

∥K∥∞
T

+ 2diam(M)2Px(E
c
T,h) + 2uAdiam(M)2Pµ(E

c
T,h)

+ 2uAEµ
[
W2

2 (µ̂T,h, µ)
]
.

Proof. Consider functions F (x) = Ex
[
W2

2 (µ̂T,h, µ)
]
andH(x) = Px(E

c
T,h). Note that the shifted

process (X̃t)t≥0 = (Xt+1)t≥0 is still a diffusion process with generator A. Therefore, if we
consider the following shifted quantities

p̃T,h(y) =
1

T

∫ T

0
Kh(Xs+1, y)ds,

µ̃T,h =

{
p̃T,hdx if p̃T,hdx is positive measure

δx0 otherwise,

ẼT,h = {p̃T,h ≥ 0},

we have

Ex
[
W2

2 (µ̃T,h, µ)
]
= Ex

[
EX1

[
W2

2 (µ̂T,h, µ)
]]

= Ex[F (X1)] = P1F (x),

Px(Ẽ
c
T,h) = Ex

[
Px(E

c
T,h)

]
= Ex[H(X1)] = P1H(x).

Thus, by ultracontractivity of the process (Xt)t≥0, at time t = 1,

Ex
[
W2

2 (µ̃T,h, µ)
]
≤ ∥P1F∥∞ ≤ uA

∫
M
F (y)µ(dy) = uAEµ

[
W2

2 (µ̂T,h, µ)
]
, (3.39)

Px(Ẽ
c
T,h) ≤ uAPµ(E

c
T,h), (3.40)

where uA has been defined after Lemma 3.5.1.

Recall that the Wasserstein distance is controlled by the total variation distance [119, Theorem
6.15]. Besides, on the event ET,h ∩ ẼT,h, pT,hdx and p̃T,hdx are both positive measures. Hence,
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on ET,h ∩ ẼT,h, by Lemma 3.4.2, when h is sufficiently small depending on M and K,

W2
2 (µ̂T,h, µ̃T,h) ≤ 2diam(M)2

∫
M

|pT,h(y)− p̃T,h(y)|dy

≤ 2diam(M)2
1

T

∫
M

(∫ 1

0
|Kh(Xs, y)|ds+

∫ T+1

T
|Kh(Xs, y)|ds

)
dy

= 2diam(M)2
1

T

(∫ 1

0

(∫
M

|Kh(Xs, y)|dy
)
ds+

∫ T+1

T

(∫
M

|Kh(Xs, y)|dy
)
ds

)
≤ 2diam(M)2

1

T
2∥K∥∞h−d

(∫ 1

0

∫
M

1∥Xs−y∥≤hdy +

∫ T+1

T

∫
M

1∥Xs−y∥≤hdyds

)
≤ c0

∥K∥∞
T

,

where c0 is a constant depending on M and we used Lemma 3.8.2 for the last inequality and
the equivalence between the Euclidean and geodesic distances.
Thus, by (3.40), for h sufficiently small,

Ex
[
W 2

2 (µ̂T,h, µ̃T,h)
]
≤ c0

∥K∥∞
T

+ diam(M)2Px

(
EcT,h ∪ ẼcT,h

)
≤ c0

∥K∥∞
T

+ diam(M)2Px(E
c
T,h) + uAdiam(M)2Pµ(E

c
T,h). (3.41)

Consequently, by triangular inequality, (3.39), and (3.41), we deduce that there exists a constant
c depending only on M such that for h sufficiently small,

1

2
Ex
[
W2

2 (µ̂T,h, µ)
]
≤ Ex

[
W2

2 (µ̂T,h, µ̃T,h)
]
+ Ex

[
W2

2 (µ̃T,h, µ)
]

≤c0
∥K∥∞
T

+ diam(M)2Px(E
c
T,h) + uAdiam(M)2Pµ(E

c
T,h) + uAEµ

[
W2

2 (µ̂T,h, µ)
]
,

which is the desired conclusion.

Hence, using Proposition 3.4.1 and Proposition 3.4.8, it only remains to bound Px(E
c
T,h). This

probability is 0 if K is nonnegative. Otherwise we assume that d ≥ 4 and that Thd ≥ c0 for a
constant c0 to fix.

Lemma 3.5.5. Assume that d ≥ 4. Let h0, c0 and c1 be the constants of Proposition 3.4.8.
Then, for any T ≥ 2, if 0 < h ≤ h0 and Thd > 32∥K∥∞/pmin, we have

Px

(
EcT,h

)
≤ uAc1h

−d(d+1) exp
(
−c0

2
Thd−2

)
.

Proof. We have the following observation for all y ∈ M and T ≥ 2:

pT,h(y) =
1

T

∫ 1

0
Kh(Xs, y)ds+

T − 1

T
× 1

T − 1

∫ T−1

0
Kh(Xs+1, y)ds

≥− 1

T

∫ 1

0
∥Kh∥∞ds+

1

2(T − 1)

∫ T−1

0
Kh(Xs+1, y)ds.

Thus,

Px

(
inf
y∈M

pT,h(y) < 0

)
≤ Px

(
1

2
inf
y∈M

(
1

T − 1

∫ T−1

0
Kh(Xs+1, y)ds

)
<

∥Kh∥∞
T

)
= Ex

(
PX1

(
inf
y∈M

p(T−1),h(y) <
2∥Kh∥∞

T

))
≤ uAPµ

(
inf
y∈M

p(T−1),h(y) <
2∥Kh∥∞

T

)
,
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where we used ultracontractivity at the last step. By Lemma 3.4.2, we have ∥Kh∥∞ ≤ 2∥K∥∞h−d

for h small enough. Hence, if Thd > 32∥K∥∞/pmin, then
2∥Kh∥∞

T < pmin/8, and we obtain thanks
to Proposition 3.4.8 that

Px

(
EcT,h

)
≤ uAPµ

(
inf
y∈M

p(T−1),h(y) < pmin/8

)
≤ uAc1h

−d(d+1) exp(−c0(T − 1)hd−2).

As T − 1 ≥ T/2, for T ≥ 2, the result holds.

We put together all the estimations obtained so far to conclude. Consider d ≥ 4 and Thd ≥ c′0,
where the constant c′0 is chosen so that Thd > 32∥K∥∞/pmin and Thd−2 is large enough with

respect to ln(T ), so that the upper bound on Px

(
EcT,h

)
given in Lemma 3.5.5 is negligible.

The proof is similar when d < 4 and K is nonnegative. By Proposition 3.5.4, Proposition 3.4.1,
Lemma 3.5.5 and Proposition 3.4.8, for any x ∈ M, for h sufficiently small, and T ≥ 2, there
are constants c, c̃ > 0 such that

Ex
[
W2

2 (µ̂T,h, µ)
]

≤ c
∥K∥∞
T

+ 2diam(M)2Px(E
c
T,h) + 2uAdiam(M)2Pµ(E

c
T,h) + cuA

p2max

p2min

∥K∥2∞
h4−d

T

≤ c̃ uA
p2max

p2min

∥K∥2∞
h4−d

T
.

3.6 Minimax lower bound

The proof of the minimax lower bound (Proposition 3.2.5) relies crucially on the computation of
the Kullback-Leibler divergence between the law of two diffusion processes (Xt) and (X ′

t) on M.
Recall that for two probability measures P and Q, the Kullback-Leibler divergence KL(P∥Q)
is defined as

KL(P∥Q) =

∫
ln

(
dP

dQ

)
dP (3.42)

whenever P is absolutely continuous with respect to Q.
Recall that we have denoted, in Section 3.2, by PT,ℓ = PT,ℓ(κmin, pmin, pmax, umax, L) the class of
all the laws of diffusion paths (Xt)t∈[0,T ] on M with arbitrary initial distribution, generator A
satisfying Assumption 4 with constant κmin and having an ultracontractivity constant smaller
than umax, and invariant measure µ having a C2 positive p density on M with a Sobolev norm
∥p∥Hℓ(M) ≤ L and a C1-norm smaller than L, satisfying pmin ≤ p ≤ pmax.
Our minimax lower bound follows from an application of Assouad’s lemma, see [116, Theorem
2.12].

Lemma 3.6.1 (Assouad’s lemma). Consider a statistical model P. Let J > 0 be an integer
and consider a subfamily {Pτ}τ ⊂ P indexed by τ ∈ {±1}J . Define the Hamming distance
dH(τ, τ

′) =
∑J

j=1 1{τj ̸=τ ′j} on the hypercube {±1}J . Assume that there exists A such that

for every τ, τ ′ ∈ {±1}J , W2(µ(Pτ ), µ(Pτ ′)) ≥ AdH(τ, τ
′) and that whenever dH(τ, τ

′) = 1,
KL(Pτ∥Pτ ′) ≤ 1/2. Then, the minimax risk over P defined in (3.21) satisfies

R(P) ≥ AJ

4
. (3.43)

To apply Assouad’s lemma, we build an appropriate family {µτ} of probability measures on M
indexed by the hypercube {±1}J by perturbating the uniform measure by small bumps. We let
pτ be the density of µτ and Pτ be the law of a diffusion path (Xt)t∈[0,T ] with initial distribution
µτ and generator Apτ q (defined in (3.1)) with q ≡ 1. In that case, the associated carré du champ
is equal to Γ(f, f) = |∇f |2, so that we can take κmin = 1.
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Lemma 3.6.2 (Existence of bumps). Let ℓ ≥ 0 be an integer. There exist constants κ, ε0 > 0
depending only on ℓ and M such that for all x ∈ M and all 0 ≤ ε ≤ ε0, there exists a smooth
function ϕx,ε : M → R supported on B(x, ε), with

∫
M ϕxdy = 0,

∫
M ϕ2xdy = εd and for all

integers 0 ≤ i ≤ ℓ,

∥ϕx,ε∥Ci(M) ≤ κε−i. (3.44)

Proof. Fix x ∈ M. Consider a chart Ψ around x. For ε small enough, the chart Ψ :
BRd(0, ε/2) → M is a diffeomorphism whose image is contained in B(x, ε). Let ϕ0 : Rd →
[−1, 1] be a smooth function of integral 0, with support included in BRd(0, 1/2), equal to 1 on
BRd(0, 1/6). Let JΨ : BRd(0, ε/2) → R be the Jacobian of Ψ. We define for u ∈ BRd(0, ε/2) and
y = Ψ(u)

ϕx,ε(y) = Cx,ε
ϕ0(u/ε)

JΨ(u)
,

and ϕx,ε is 0 outside Ψ(BRd(0, ε/2)). By construction,
∫
M ϕx,εdy = Cx,ε

∫
BRd (0,ε/2)

ϕ0(u/ε)du =

0. We choose Cx,ε so that
∫
M ϕ2x,εdy = εd. It remains to bound the Ci-norm of ϕx,ε for 0 ≤ i ≤ ℓ.

For ε small enough (uniformly over x as M is compact), the chart Ψ can be chosen so that the
Cℓ-norm of the function JΨ : BRd(0, ε/2) → R is uniformly bounded, with JΨ(u) ≥ 1/2 for all
u ∈ BRd(0, ε/2). In particular, as ϕ0 is equal to 1 on BRd(0, 1/6), this implies that the constant
Cx,ε is larger than c0 for some constant c0 depending only on M. The smoothness of ϕ0 and
of JΨ then imply the desired controls on the Ci-norm of ϕx,ε (applying Leibniz formula for the
derivative of a product).

Fix 0 < ε ≤ ε0 and consider a set of points x1, . . . , xJ ∈ M that are all at least 2ε apart.
Note that by a simple covering argument, the number J can be chosen to be of order ε−d. For
j = 1, . . . , J , write ϕj = ϕxj ,ε. Assume without loss of generality that the manifold M has unit
volume. For τ ∈ {±1}J , consider the probability measure

pτ = 1 +
v

2κ

J∑
j=1

τjϕj .

for some 0 ≤ v ≤ εℓ. Note that according to Lemma 3.6.2, pτ satisfies 1/2 ≤ pτ ≤ 3/2 and
integrates to 1. According to Lemma 3.6.2, the Cℓ-norm of pτ is smaller than 1/2 (and therefore
so is its Sobolev norm).

Using Remark 3.8.6, we see that for a choice of pmin ≤ 1/2, pmax ≥ 3/2, κmin ≤ 1, L ≥ 1/2,
all the associated measures µτ are in the statistical model PT,ℓ = PT,ℓ(κmin, pmin, pmax, umax, L)
for some umax large enough, as long as ℓ ≥ 2.

Let τ, τ ′ ∈ {±1}J . Consider the function f =
∑J

j=1 1{τj ̸=τ ′j}τjϕj . The function f : M → R is

Lipschitz continuous with Lipschitz constant κε−1. As the 2-Wasserstein distance W2 is larger
than the 1-Wasserstein distance W1, it holds by duality [119, Particular Case 5.16] that

W2(µτ , µτ ′) ≥ W1(µτ , µτ ′) ≥
1

κε−1

(∫
M
fpτdy −

∫
M
fpτ ′dy

)
=

v

2κ2ε−1

J∑
j=1

1{τj ̸=τj′}2τj

∫
M
ϕjfdy.

By construction of f and as
∫
M ϕ2jdy = εd, this quantity is equal to vεd+1

κ2
dH(τ, τ

′), that is the

first condition in Assouad’s lemma holds for A = vεd+1/κ2.

The Kullback-Leibler divergence between Pτ and Pτ ′ can be controlled using Girsanov theo-
rem. Indeed, Girsanov theorem provides an explicit formula for the Kullback-Leibler divergence
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between Pτ and Pτ ′ (see Section 3.10):

KL(Pτ ||Pτ ′) =
T

4

∫
M

∥∇ ln pτ −∇ ln pτ ′∥2p2τdy =
T

4

∫
M

∥∇pτ −
pτ
pτ ′

∇pτ ′∥2dy

≤ T

2

∫
M

∥∇pτ −∇pτ ′∥2dy +
T

2

∫
M

∥∇pτ ′∥2

p2τ ′
(pτ − pτ ′)

2dy.

Consider τ, τ ′ ∈ {±1}J with dH(τ, τ
′) = 1, and assume without loss of generality that the two

vectors differ only by their first entry. Using the available bound on the C1-norm of pτ and the
fact that pτ ≥ 1/2, we obtain that

KL(Pτ ||Pτ ′) ≤
T

2

∫
M

∥∇pτ −∇pτ ′∥2dy +
v2ε−2

2
T

∫
M
(pτ − pτ ′)

2dy

≤ T

2

v2

κ2

∫
B(x1,ε)

∥∇ϕ1∥2dy +
v4ε−2

2κ2
T

∫
M
ϕ21dy

≤ T

2
v2ε−2

∫
B(x1,ε)

dy +
v4

2κ2
ε−2+dT ≲ Tv2εd−2,

where we use at the last line that the volume of a ball of radius ε is of order εd for ε small
enough (see Lemma 3.8.2), and v ∈ [0, εℓ].

When d ≥ 5, choose ε = cT−1/(2ℓ+d−2) and v = εℓ. For c small enough, KL(Pτ∥Pτ ′) ≤ 1/2. By
Assouad’s lemma, and recalling that we can pick J of order ε−d, we obtain that

R(PT,ℓ) ≥
AJ

4
=
εℓ+d+1J

4κ2
≳ εℓ+1 ≳ T− ℓ+1

2ℓ+d−2 , (3.45)

concluding the proof of Proposition 3.2.5 in this case. For d ≤ 4, we let ε = 1 and v = cT−1/2

for c small enough, so that KL(Pτ ||Pτ ′) ≤ 1/2 and J is of order 1. Then, Assouad’s lemma
gives

R(PT,ℓ) ≥
AJ

4
=
vεd+1J

4κ2
≳ T−1/2. (3.46)

This concludes the proof. □

3.7 Control of the bias term

In kernel density estimation, variance terms can be controlled with minimal assumptions on the
kernel K (say, boundedness), whereas choosing a kernel having specific properties is required
to control bias terms [116]. The situation is not different for the estimation of µ: we are able
to control the variance term Ex

[
W2

2 (µ̂T,h, µh)
]
with few assumptions on K (see Theorem 3.2.2).

However, controlling the bias requires the kernel K to be of sufficiently high order in the
following sense.

Definition 3.7.1 (Order of a kernel). For a multi-index α = (α1, ..., αd) ∈ Zd+, we denote

|α| := α1 + · · ·+ αd, zα =
∏d
j=1 z

αj

j and ∂αK the partial derivative of K in the direction α.

A function K : Rd → R is called kernel of order r if the function is of class Cr, and K satisfies∫
Rd

∂αK(z)zα̃dz = 0,

for any multi-index α, α̃ such that |α| < r and |α̃| < r + |α|, with |α| > 0 when α̃ = 0.

When K is of order larger than ℓ+ 1, we obtain a tight control of the bias following [37].



3.8. SOME TECHNICAL PROOFS 105

Proposition 3.7.2 (Bias term). Let K be a kernel of order larger than ℓ + 1, and let p be a
density of class C2 with a finite Sobolev norm ∥p∥

Hℓ(M)
. Then, for h small enough,

W2
2 (µh, µ) ≤

c∥p∥2
Hℓ(M)

p2min

h2ℓ+2, (3.47)

where c depends on M and K.

Proof. As µ has a lower bounded density, it holds according to Lemma 3.4.4 that

W2
2 (µh, µ) ≤ 4p−1

min

∫
M

∣∣∣(−∆)−1/2(p− ph)
∣∣∣2dx,

whereas it is proved in [37, Proposition 9] that∫
M

∣∣∣(−∆)−1/2(p− ph)
∣∣∣2dx ≤ c∥p∥2Hℓ(M)h

2ℓ+2

when K is a kernel of order larger than ℓ+ 1, where c depends on M and K.

3.8 Some technical proofs

3.8.1 Proof of Lemma 3.4.2

(i) The proof of the uniform convergence of (h−dηh(.))h>0 is given in [37, Lemma 10] when
the kernel K has some regularity. We detail below another proof assuming only that K
is continuous with compact support in [0, 1].

Recall that since M is compact, the Euclidean norm and the geodesic distance are equiv-
alent: there is a constant cM > 1 such that ∀(x, y) ∈ M2

∥x− y∥ ≤ ρ(x, y) ≤ cM∥x− y∥.

Consider a family Ex : BRd(0, cx) → M of Riemannian normal parametrizations at x ∈ M
(see [61, Section 3.1] or [79, Proposition 5.24]). Thanks to [61, Theorem 3.4] (for more
details see [79, Proposition 10.37]), there exists a constant c1 > 0, such that all the
parametrizations (Ex)x∈M have the same domain BRd(0, c1), and for any h < c1

cM
the

Jacobian determinant Jx of the change of variables v = E−1
x (y) is uniformly bounded in

x.

Consequently,

h−dηh(x) = h−d
∫
M
K

(
∥x− y∥

h

)
1∥x−y∥≤hdy

= h−d
∫
BRd (0,c1)

K

(
∥x− Ex(v)∥

h

)
1∥x−Ex(v)∥≤hJx(v)dv

=

∫
BRd(0,

c1
h )
K

(∥∥∥∥x− Ex(hv)
h

∥∥∥∥)1∥∥∥x−Ex(hv)
h

∥∥∥≤1
Jx(hv)dv.

We know that ρ(x, y) =
∥∥E−1

x (y)
∥∥ (see [61, Theorem 3.2]). Then by equivalence of the

distances, we have ∥x− Ex(hv)∥ ≥ ρ(x,Ex(hv))
cM

= h∥v∥
cM

. Consequently,{∥∥∥∥x− Ex(hv)
h

∥∥∥∥ ≤ 1

}
=

{∥∥∥∥x− Ex(hv)
h

∥∥∥∥ ≤ 1

}
∩ {∥v∥ ≤ cM}.
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Beside, by [61, Theorem 3.4], there exists c2 > 0, independent of x, such that |Jx(v)− 1| ≤
c2∥v∥2 and ∥x− Ex(v)− v∥ ≤ c2∥v∥2 (since E ′

x(0) = Id).

We deduce that∣∣∣∣K(∥∥∥∥x− Ex(hv)
h

∥∥∥∥)∣∣∣∣1∥∥∥x−Ex(hv)
h

∥∥∥≤1
Jx(hv)1BRd(0,

c1
h )

(v) ≤ ∥K∥∞(1 + c2c
2
1)1∥v∥≤cM ,

where the upper-bound is an integrable function on Rd. We also remark that (Jx(hv))h>0

converges to 1 and
(∥∥∥x−Ex(hv)

h

∥∥∥)
h>0

converges to ∥v∥ when h → 0, both uniformly on

M. As K is continuous on Rd with compact support, the function is thus uniformly

continuous on Rd. We then deduce that
(
K
(∥∥∥x−Ex(hv)

h

∥∥∥))
h>0

converges to K(∥v∥) when
h→ 0, uniformly on M.

By the dominated convergence theorem, we deduce that, when h → 0,
(
h−dηh

)
h>0

con-

verges to
∫

Rd K(∥v∥)dv = 1, uniformly on M.

(ii) By uniform convergence, ηh > 0 when h is small enough, so that Kh is well-defined. The
result then follows from a straightforward computation.

(iii) We note that the support of Kh is included in
{
(x, y) ∈ M2 : ∥x− y∥ ≤ h

}
, and

|Kh(x, y)| ≤
1

|h−dηh(x)|
∥K∥∞h

−d.

There is uniform convergence on M of (h−dηh(.))h>0 to 1 when h→ 0. Then there exists
hc > 0 such that ∀h < hc, ∀(x, y) ∈ M2, we have h−dηh(x) ≥ 1

2 and

|Kh(x, y)| ≤ 2∥K∥∞h
−d.

(iv) Let x ∈ M and y, y′ ∈ M. Let L be the Lipschitz constant of K. Then, by the triangle
inequality when h < hc, so that h−dηh(x) ≥ 1

2 , we have

|Kh(x, y)−Kh(x, y
′)| ≤ 1

|h−dηh(x)|
h−d|K

(
∥x− y∥

h

)
−K

(
∥x− y′∥

h

)
|

≤ 2Lh−d−1∥y − y′∥ ≤ 2Lh−d−1ρ(y − y′).

Remark 3.8.1. As mentioned in Remark 3.2.1, it is simpler to work with a kernel K̃h based on

the geodesic distance ρ, K̃h(x, y) :=
1

η̃h(x)
K
(
ρ(x,y)
h

)
, with η̃h(x) =

∫
MK

(
ρ(x,y)
h

)
dy. In that case,

we can easily prove, without regularity assumptions, that when K is an integrable function with
support in [0, 1] and

∫
Rd K(∥v∥)dv = 1, there is a constant κ > 0 such that

∥∥hdη̃h − 1
∥∥
∞ ≤ κh2.

Actually, using the Riemannian normal parametrization Ex at x ∈ M and ρ(x, y) =
∥∥E−1

x (y)
∥∥,

as in the previous proof of Lemma 3.4.2, we obtain for x ∈ M∣∣∣h−dη̃h(x)− 1
∣∣∣ = ∣∣∣∣h−d ∫

M
K

(
ρ(x, y)

h

)
1ρ(x,y)≤hdy − 1

∣∣∣∣
= h−d

∣∣∣∣∣
∫
BRd (0,c1)

K

(
∥v∥
h

)
1∥v∥≤hJx(v)dv −

∫
BRd (0,h)

K

(
∥v∥
h

)
dv

∣∣∣∣∣
≤ h−d

∫
BRd (0,h)

∣∣∣∣K(∥v∥
h

)∣∣∣∣|Jx(v)− 1|dv

≤ c2h
2

∫
BRd (0,1)

|K(∥v∥)|∥v∥2dv

since |Jx(v)− 1| ≤ c2∥v∥2.
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3.8.2 Proof of Lemma 3.4.3

Using the same proof as in Appendix 3.8.1, we first remark that uniformly in x ∈ M the term(
h−d

∫
M 1∥x−y∥⩽hdy

)
h>0

converges to vol(BRd(0, 1)). Besides, by the triangular inequality,

|ph(x)− p(x)| =
∣∣∣∣∫

M

1

ηh(y)
K

(
∥x− y∥

h

)
p(y)dy − p(x)

∣∣∣∣
≤
∣∣∣∣∫

M

(
1

ηh(y)
− h−d

)
K

(
∥x− y∥

h

)
p(y)dy

∣∣∣∣+ ∣∣∣∣∫
M
h−dK

(
∥x− y∥

h

)
(p(y)− p(x))dy

∣∣∣∣+
+

∣∣∣∣∫
M
h−dK

(
∥x− y∥

h

)
p(x)dy − p(x)

∣∣∣∣
≤
∥∥∥∥ 1

h−dηh
− 1

∥∥∥∥
∞
∥K∥∞∥p∥∞

∫
M
h−d1∥x−y∥≤hdy + ∥K∥∞Lip(p)

∫
M
h−d1∥x−y∥≤h ∥x− y∥ dy+

+ |h−dηh(x)− 1||p(x)|,

where Lip(p) is the Lipschitz constant of p with respect to the Euclidean distance, which is
bounded up to a constant by the C1-norm of p (recall that the Euclidean and geodesic distances
are equivalent). Hence, by the remark at the beginning of this proof, there is a constant C > 0
such that for all x ∈ M,

|ph(x)− p(x)| ⩽C∥K∥∞ ∥p∥C1

(∥∥∥∥ 1

h−dηh
− 1

∥∥∥∥
∞

+ h+
∥∥∥h−dηh − 1

∥∥∥
∞

)
, (3.48)

where the constant C depends only on the embedding M ⊂ Rm and where the parenthesis in the
right term converges to zero by Lemma 3.4.2(i). Therefore, we deduce the uniform convergence
of (ph)h>0 to p on M, and the second result of the lemma is straightforward a consequence of
Equation (3.48). We have the desired conclusion.

3.8.3 Proof of Lemma 3.3.2

We will make use of the following estimates.

Lemma 3.8.2. Let x ∈ M. For all h > 0 small enough, it holds that for α ≥ d∫
ρ(x,y)≥h

ρ(x, y)−αdy ≤ Cα

{
hd−α if α > d

ln(1/h) if α = d
(3.49)

and that for α < d ∫
ρ(x,y)≤h

ρ(x, y)−αdy ≤ Cαh
d−α. (3.50)

Before giving the proof, let us note that since the geodesic distance and the Euclidean norm are
equivalent on the compact manifold M (see [51, Proposition 2]), we have a similar result with
the Euclidean norm instead of the geodesic distance in Lemma 3.8.2.

Proof. Using the change of variables v = E−1
x (y) as in the proof of Lemma 3.4.2 (see Sec-

tion 3.8.1), we have for h0 > 0 a constant larger than h∫
ρ(x,y)≥h

ρ(x, y)−αdy ≤
∫
h0>ρ(x,y)≥h

ρ(x, y)−αdy + ch−α0 .

We pick h0 small enough so that, by a change of variable∫
h0>ρ(x,y)≥h

ρ(x, y)−αdy =

∫
h0>∥v∥≥h

∥v∥−αJx(v)dv,

where Jx(v) is a Jacobian, that is bounded by 2 for all x and v when h0 is chosen small enough.
We then conclude by computing the integral. The proof of the second statement is similar.



108 CHAPTER 3. CONVERGENCE OF CONVOLUTED OCCUPATION MEASURES

We only prove Lemma 3.3.2 the case d ≥ 3, the cases d = 1 and d = 2 being treated with
minimal modifications. By Proposition 3.3.1 (iv) on the Green function G, for d ≥ 3, there
exists a constant κ > 0 such that ∀(x, y) ∈ M2 \ diag(M),

|G(x, y)| ≤ κρ(x, y)2−d.

Hence,

|(Gf)(z)| ≤
∫
M

|G(z, y)||f(y)|dy ≤ ∥f∥∞κ
∫
M
ρ(z, y)2−d1ρ(x,y)≤hdy.

When ρ(x, z) > 2h, we have ρ(x, y) ≤ ρ(x, z)/2 and

ρ(z, y) ≥ ρ(x, z)− ρ(x, y) ≥ 1

2
ρ(x, z).

Then, as 2− d < 0, we obtain

|(Gf)(z)| ≤ 2d−2∥f∥∞κ
∫
M

1ρ(x,y)≤hdy ρ(x, z)
2−d.

According to Lemma 3.8.2,

|(Gf)(z)| ≤ C∥f∥∞h
dρ(x, z)2−d.

We now turn to estimates when ρ(x, z) < 2h. Notice that

|(Gf)(z)| ≤ ∥f∥∞κ
∫
M
ρ(z, y)2−d1ρ(z,y)≤3hdy.

The conclusion then also follows from Lemma 3.8.2.

3.8.4 Wasserstein distance between a measure and its convolution

Lemma 3.8.3. Let ν be a probability measure supported on M. Let K be a nonnegative kernel,
with

∫
Rd K(∥u∥)du = 1. For h > 0, let νh be the measure with density qh(x) =

∫
Kh(z, x)dν(z),

where Kh is defined in (3.11). Then, there exists h0 depending only on M such that for h ≤ h0

W2
2 (ν, νh) ≤ c1∥K∥∞h2 (3.51)

for some constant c1 depending on M.

Proof. By the convexity of the Wasserstein distance, it holds that

W2
2 (ν, νh) ≤

∫
W2

2 (δx, (δx)h)dν(x) (3.52)

Let c0 be such that ρ(x, y) ≤ c0∥x−y∥ for all (x, y) ∈ M2 (recall that the geodesic distance and
the Euclidean distance are equivalent). We apply Lemma 3.4.2 for h small enough to obtain

W2
2 (δx, (δx)h) =

∫
Kh(x, z)ρ(x, z)

2dz

≤ 2∥K∥∞h−d
∫
ρ(x,z)≤c0h

ρ(x, z)2dz ≤ c1∥K∥∞h2,

where we use Lemma 3.8.2 at the last line.
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3.8.5 The ultracontractivity term

We give in this section an explicit control of the ultracontractivity constant introduced at the
beginning of Section 3.5. To this aim we need to introduce the iterated carré du champs.

Definition 3.8.4. Given a differential operator A, its iterated carré du champs Γ2 is defined
as:

Γ2(f, f) :=
1

2
[AΓ(f, f)− 2Γ(Af, f)],

where Γ is the carré du champs of A.

Lemma 3.8.5. Let p ∈ C2(M) be a positive density on M with respect to the volume measure
dx, and A a C2-elliptic second-order differential operator, which is symmetric with respect to
the probability measure µ = pdx. Then, there is a constant κ, which can be negative, such that:

Γ2(f, f) ≥ κΓ(f, f), (3.53)

In particular, the associated semigroup (Pt)t⩾0 satisfies, for all t > 0,

∥Ptf∥∞ ≤ exp

[
κdiam(M)2

2(e2κt − 1)

]
× ∥f∥L2(µ). (3.54)

Proof. Because A is a C2-elliptic operator of second-order, there is a C2-metric g̃ on M such

that Γ(f, f) =
〈
∇̃f, ∇̃f

〉
g̃
, where ∇̃ is the gradient of the new metric (see [67, eq. 1.3.3]).

Hence, due to the symmetry of A with respect to µ, A = ∆̃+ ∇̃ln(p̃), where ∆̃ is the Laplacian
of the new metric and p̃ = dµ

dvolg̃
, where volg̃ is the volume measure in the new metric.

Consequently, by [12, eq. C.5.3] we have Γ2(f, f) = |∇∇f |2 +
(
Riccg̃ − ∇̃∇̃ ln(p̃)

)(
∇̃f, ∇̃f

)
,

where Riccg̃ denotes the Ricci tensor. Therefore, as in [12, eq C.6.3], (3.53) is equivalent to

Riccg̃ − ∇̃∇̃ ln(p̃) ≥ κ. (3.55)

Hence, from the compactness of M and the C2 continuity of both A and p, we have the desired
conclusion for the first part.
For the second part, we have from the implication (1) → (3) of Theorem 2.3.3 in [120] with
p = 2, that for any x,

|Ptf(x)|2 =
∫
M

|Ptf(x)|2µ(dy) ≤
∫
M
Pt|f |2(y) exp

[
κdiam(M)2

e2κt − 1

]
µ(dy) =

exp

[
κdiam(M)2

e2κt − 1

] ∫
M
Pt|f |2(y)µ(dy) = exp

[
κdiam(M)2

e2κt − 1

]
∥f∥2L2(µ),

since µ is the invariant measure of the underlying process. Therefore, we have the second
inequality, which is the ultracontractivity of A.

Remark 3.8.6. We note that for the operator Apq defined by (3.1) with q ≡ 1, there is no need
to change the metric to obtain the result. Consequently, the constant κ appearing in Lemma 3.8.5
depends only on M, an upper bound on ∥p∥C2(M) and pmin. This enables the choice of a uniform
ultracontractivity constant umax for the minimax lower bound in Section 3.6.

3.9 SDEs for the diffusions with generator Apq

In this section, we give the SDEs satisfied by the diffusion processes of generator (3.1) and (3.2).
Recall that the Stratonovich integral (see [98, page 82]) is defined as follows:
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Definition 3.9.1 (Stratonovich integral). Let X,Y be two continuous real-valued semimartin-
gales. The Stratonovich integral of Y with respect to X, denoted by

∫ t
0 Ys ◦ dXs, is defined

by ∫ t

0
Ys ◦ dXs :=

∫ t

0
YsdXs +

1

2
⟨Y,X⟩t,

where the first term is the Itô integral of Y with respect to X and ⟨., .⟩ is the bracket process
(also known as the quadratic covariation process).

With the Stratonovich integral, the classical Itô formula can then be written is the following
way (see [98, Theorems 20-21, pages 277-278]), for a continuous d-dimensional semimartingale
X and a function f : Rd → R of class C2: f(X) is a semimartingale and

f(Xt)− f(X0) =
d∑
i=1

∫ t

0

∂f

∂xi
(Xs) ◦ dXi

s. (3.56)

Because of this chain rule, the Stratonovich integral is better fitted to differential calculus on
manifolds than the usual Itô integral.

We recall that a vector field V on a manifold M is a family {V (x)}x∈M such that ∀x ∈ M,
V (x) ∈ TxM (see for e.g. [77, Chapter 4]). In local coordinates (x1, x2, ..., xd), a smooth vector
field V can be represented as

V (x) =
d∑
i=1

V i(x)
∂

∂xi

∣∣∣∣
x

,

where V 1, . . . , V d are real smooth functions on the domain of the local coordinate system, and
where

{
∂
∂xi

}
1≤i≤d denotes a basis of TxM.

Proposition 3.9.2 (Theorem 1.2.9 in [67]). Let l ≥ 1. Consider the Stratonovich SDE

dXt =

l∑
α=1

Vα(Xt) ◦ dBα
t + V0(Xt)dt (3.57)

where (Vα)0≤α≤l are C2 vector fields and B = (Bα)1≤α≤l is the standard l-dimensional Brownian
motion. Then, there exists a unique strong solution to (3.57) (up to explosion time) whose
infinitesimal generator is

Af(x) = 1

2

l∑
α=1

(
V 2
α f
)
(x) + (V0f)(x),

where
(
V 2
α f
)
(x) := (Vα(Vαf))(x), and whose carré du champ operator is given by Γ(f, g) =

1
2

∑l
α=1 Vα(f)Vα(g).

Let {eα}1≤α≤m be an orthonormal basis on Rm. For each x ∈ M, we consider Pα(x) the
orthogonal projection of eα to TxM. Let us note that Pα is a vector field on M. In a local
coordinate system (x1, x2, ..., xd),

Pα(x) =

d∑
i=1

P iα(x)
∂

∂xi

∣∣∣∣
x

.

Then the Laplace-Beltrami operator satisfies (see [67, Theorem 3.1.4])

∆ =
m∑
α=1

P 2
α. (3.58)
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Remark that for two real-valued functions of class C2 on M, we have:

⟨∇f,∇h⟩ =
m∑
α=1

(Pαf)(Pαh). (3.59)

Then, as an application of Proposition 3.9.2, there exists a unique strong solution starting at
x ∈ M to the following SDE

dXt =

m∑
α=1

√
2q(Xt)Pα(Xt) ◦ dBα

t +

m∑
α=1

(
1

2
(Pαq)(Xt) + q(Pα(ln p))(Xt)

)
(Pαf)(Xt) (3.60)

for (Bα)1≤α≤m independent euclidean 1-dimensional Brownian motions, and whose infinitesimal
generator is

Apqf = q∆f + ⟨q∇ ln(pq),∇f⟩. (3.61)

In the particular case where q ≡ 1, we deduce that the unique solution to the SDE

dXt =
√
2

m∑
α=1

Pα(Xt) ◦ dBα
t +

m∑
α=1

Pα(ln p)(Xt)Pα(Xt)dt, (3.62)

has the infinitesimal generator
Lf = ∆f + ⟨∇ ln p,∇f⟩.

Proof of (3.61). To compute the infinitesimal generator of (3.60), we apply Proposition 3.9.2
with Vα =

√
2qPα and V0 =

∑m
α=1

(
1
2(Pαq) + q(Pα(ln p))

)
Pα. From this proposition, we know

that the generator of X is, for a test function f of class C2,

Apqf(x) =

m∑
α=1

1

2
(V 2
α f)(x) + (V0f)(x).

We have: (
V 2
α f
)
(x) = 2

√
qPα(

√
q(Pαf))(x) = 2q(x)

(
P 2
αf
)
(x) + (Pαq)(x)(Pαf)(x)

Thus,

Apqf(x) = q(x)∆f(x) +
m∑
α=1

(Pαq)(x)(Pαf)(x) + q
m∑
α=1

(Pα(ln p))Pα.

We conclude thanks to (3.59).

At last, since Apq is self-adjoint with respect to µ, we deduce the following proposition.

Proposition 3.9.3. The measure µ = p(x)dx is invariant for Apq.

3.10 Kullback-Leibler divergence of path space measures on manifolds

In this section, the operator L will be denoted by Lp to highlight its dependence with respect to
the density p of the measure µ. Let us denote by P(p,T ) the probability measure on C([0, T ],M),
given by the distribution of the diffusion with generator Lp, defined for f ∈ C2(M) by:

Lpf = ∆f + ⟨∇f,∇ ln p⟩,

and starting from its invariant measure µ = pdx.
We will denote by E(p,T ) the expectation in the distribution P(p,T ) and we define the Kullback-
Leibler divergence as:

KL(P(p,T )||P(q,T )) = E(p,T )

[
ln

dP(p,T )

dP(q,T )

]
(3.63)

where dP(p,T )/dP(q,T ) stands for the density of P(p,T ) with respect to the measure P(q,T ).
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Theorem 3.10.1. For any two C1 strictly positive probability densities p and q on M,

KL(P(p,T )||P(q,T )) =
T

4

∫
M

∥∇ ln p−∇ ln q∥2p2dx. (3.64)

The proof of Theorem 3.10.1 relies crucially on Girsanov’s theorem.

Proposition 3.10.2 (Girsanov’s theorem for embedded manifolds). Consider two continu-
ous tangent vector fields Z1, Z2 that are tangent to M. Suppose that (Xt)t≥0 satisfies the
Stratonovich SDE:

dXt = Z2(Xt)dt+
√
2

m∑
α=1

Pα(Xt) ◦ dBα
t , X0 = x0 ∈ M,

where B = (Bα)1≤α≤m is a m-dimensional standard Brownian motion under P, and (Pα)1≤α≤m
is the tangent projection of the standard basis of Rm on M (see Section 3.9).
Then, defining for any T > 0,

ET = exp

(
−
∫ T

0

1√
2
(Z2 − Z1)(Xt)dBt +

1

4

∫ T

0
∥Z1(Xt)− Z2(Xt)∥22dt

)
, (3.65)

it follows that:
E[ET ] = 1

and under dQ = ETdP, (Xt)t≥0 is a solution to the SDE:

dXt = Z1(Xt)dt+
√
2

m∑
α=1

Pα(Xt) ◦ dB̃α
t , X0 = x0 ∈ M,

with B̃ being a Brownian motion under Q.

Proof for Proposition 3.10.2. Let T > 0. The first part follows from the fact that the Itô
integral

∫ T
0 (Z2 −Z1)(Xt)dBt is a local martingale with bounded quadratic variation (since the

Zi’s are continuous and M is compact, hence the Zis are bounded on M). For the second part,
by Girsanov’s theorem in Rm, the stochastic process (B̃t)0≤t≤T defined by:

B̃t = Bt +

∫ T

0
u(Xt)dt,

with u(x) = 1√
2
(Z2−Z1)(x), is a standard Brownian motion under Q. Besides, the Stratonovich

SDE for Xt can be rewritten as:

dXt = Z2(Xt)dt+
√
2

m∑
α=1

Pα(Xt) ◦ dBα
t

= Z2(Xt)dt+
√
2

m∑
α=1

Pα(Xt) ◦
(
dB̃α

t − uα(Xt)dt
)

=
√
2

m∑
α=1

Pα(Xt) ◦ dB̃α
t + (Z2(Xt)−

m∑
α=1

√
2uα(Xt)Pα(Xt))dt

= Z1(Xt) dt+
√
2

m∑
α=1

Pα(Xt) ◦ dB̃α
t ,

hence, we imply the desired conclusion.

Let us now prove Theorem 3.10.1.
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Proof of Theorem 3.10.1. Let (Xt)t≥0 be a solution to the SDE:

dXt = ∇ ln p(Xt)dt+
√
2

m∑
α=1

Pα ◦ dBα
t ,

with X0 uniform on M and with B being a m-dimensional standard Brownian motion under
some probability space P. The infinitesimal generator of (Xt)t≥0 is Lp by (3.62). By Proposi-
tion 3.10.2, (Xt)t≥0 is also a solution to the SDE:

dXt = ∇ ln q(Xt)dt+
√
2

m∑
α=1

Pα ◦ dB̃α
t ,

with X0 uniform on M, and where B̃ is a m-dimensional standard Brownian motion under the
probability measure Q defined by dQ

dP = ET with

ET = exp

(
−MT +

1

2
⟨M⟩T

)
, MT =

∫ T

0

1√
2
(∇ ln p−∇ ln q) (Xt)dBt.

Therefore, by the definition of Kullback-Leibler divergence,

KL(P(p,T )||P(q,T )) = E

[
ln

dQ
dP

]
= E

[
−MT +

1

2
⟨M⟩T

]
=

1

2
E[⟨M⟩T ].

We have the desired conclusion by computing E[⟨M⟩T ], because the distribution ofXt is µ = pdx
at each time t ≥ 0.
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1-Wasserstein minimax estimation for general smoothed

probability densities
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This chapter is a research note I prepared during my work on minimax estimators with respect
to the Wasserstein distance metric for Chapter 3.

In this analysis, we investigate the problem of estimating a probability measure from i.i.d. sam-
ples under the 1-Wasserstein metric. Specifically, we establish minimax convergence rates for
measure estimation in the Wasserstein metric. Our work broadens the existing framework by
removing the strict positivity condition and relaxing the restrictive boundedness requirements
on probability densities. As a result, a wider class of distributions is encompassed, including
Gaussian, lognormal, and Student’s t-distributions. Furthermore, by employing kernel smooth-
ing estimators, we derive efficient minimax estimators that are expected to be more intuitive
and basic than previous wavelet-based methods. Our findings demonstrate that, for densities
with finite moments and bounded Sobolev norms, kernel-based smoothing attains optimal min-
imax rates in various general settings. Moreover, an almost sure convergence speed result is
also established.

4.1 Introduction

Optimal transportation theory, originally developed in the 18th century by Gaspard Monge [88]
and later extended by Leonid Kantorovich [74] in the 20th century, has become a pivotal tool in
modern mathematical and applied sciences. This theory addresses the problem of transforming
one probability distribution into another in the most efficient way, measured by a cost function
[119]. More precisely, given two Polish spaces (X , ρX ) and (Y, ρY) and two probability Borel
measures µ ∈ P(X ) and ν ∈ P(Y), where P(X ) and P(Y) are respectively the spaces of all
Borel probability measures on X and Y. The transportation cost between µ and ν with respect
to a transportation cost function c : X ×Y → [0,∞) is defined via the transportation cost with

115
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respect to the intrinsic metric as:

Tc(µ, ν) := inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y), (4.1)

where Π(µ, ν) is the set of all joint probabilities on X × Y with marginals µ, ν.
A particular case of interest of optimal transportation cost is when two Polish spaces are iden-
tical, i.e., X = Y = (M, ρ) for some Polish space (M, ρ). In this framework, for any real
positive number q ≥ 1, the q-th Wasserstein distance between two probability measures µ and
ν is defined as:

Wq(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
M×M

ρ(x, y)qdπ(x, y)

)1/q

. (4.2)

It is worth noticing that specifically for q = 1, 1-Wasserstein distance between two measures can
also be represented as result of a maximization problem over the space of Lipschitz functions
on M [45, Proposition 2.6.6]:

W1(µ, ν) := sup
f :M→R is 1-Lipschitz

(∫
M
fdµ−

∫
M
fdν

)
. (4.3)

In recent years, Wasserstein distances between probability measures have found their applica-
tions in various domains, particularly in machine learning and statistics. In machine learning,
optimal transport provides a robust framework for comparing probability distributions, which is
fundamental in numerous tasks such as generative modeling, domain adaptation, and clustering.
For example, the Wasserstein distance, derived from optimal transport theory, has proven to
be a powerful metric to measure the similarity between distributions, offering advantages over
traditional metrics such as the Kullback-Leibler divergence or total variation distance [10, 47].
Its ability to capture the geometric structure of the data makes it particularly effective in high-
dimensional spaces, where data often lie on lower-dimensional manifolds [22]. The significance
of optimal transport in statistics is equally profound. It offers novel methods for nonparamet-
ric estimation and hypothesis testing [100, 90, 50]. Using the principles of optimal transport,
statisticians can tackle a wider range of problems and achieve more interpretable results in areas
such as empirical distribution approximation and estimation of dependency structures [37].
In this chapter, we revisit the problem of approximating probability measures with smooth
density under the Wasserstein metric, a topic extensively studied in recent literature [118, 90,
37]. Specifically, given a sample consisting of n independent and identically distributed (i.i.d.)
random variables drawn from an unknown probability measure µ, our objective is to construct
from this sample an estimator µ̃n for µ that attains optimal asymptotic convergence rates with
respect to the Wasserstein metric W1(µ̃n, µ) when the sample size n goes to infinity.
Recognizing that convergence rates of empirical measures in Wasserstein distance crucially
depend on the dimensional characteristics of the underlying space [46, 90, 37], we divide our
analysis into two distinct scenarios. The first scenario addresses the case where the measure
µ is absolutely continuous with respect to the Lebesgue measure on the Euclidean space Rd.
The second scenario considers the setting in which µ is supported on a low-dimensional space
M, which we assume to be a compact d-dimensional manifold without boundary, smoothly
embedded in a high-dimensional Euclidean space Rm (m > d).
Besides, in statistics, the regularity control on density functions is usually expressed in terms of
Besov norms [57]. Nevertheless, Besov norms are interpolations of Sobolev norms Hs

q (M) [80,
p.152,153]:

∥f∥Hs
q (Rd) =

(∫
Rd

max
1≤i≤s

∥∇ip(x)∥qop dx
)1/q

with s ∈ N and f ∈ C∞(Rd),

∥f∥Hs
q (M) =

(∫
M

max
1≤i≤s

∥∇ip(x)∥qop dx
)1/q

with s ∈ N and f ∈ C∞(M),
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where in Rd setting, ∇ip(x) : (Rd)i → R denotes the standard ith-order derivative of p at x, and
in manifold setting, ∇ip(x) : (TxM)i → R denotes the ith-order covariant derivatives of p at x
(cf. [64, p.6, 21] or Section 1.4.6).
For the sake of simplicity, in this chapter, Sobolev norms are the only measure of regularity for
density functions we will use.

Let us begin by examining the Euclidean scenarios (Rd, ∥ · ∥2).
Let µ be a probability measure on Rd with density p with respect to the Lebesgue measure of
Rd and X1, X2, ..., Xn be a sample of n i.i.d. random elements sampled from µ. In this setting,
we analyze the asymptotic behavior of the kernel measure estimator µn,h as the sample size n
tends to infinity and the smoothing bandwidth h decreases at an appropriate speed to zero.
This kernel estimator is explicitly defined by:

µ̂n,h(dy) =
1

n

n∑
i=1

h−dK

(
∥Xi − y∥2

h

)
dy, (4.4)

where h is the smoothing parameter, and the kernel function K : R+ → R is bounded, measur-
able, and supported on [0, 1], satisfying the normalization condition:∫

Rd

K(∥x∥2) dx = 1. (4.5)

This method of estimator construction is called kernel smoothing [63, Chapter 6]. Note that,
the normalization condition Eq (4.5) implies that

µ̂n,h(R
d) = 1, (4.6)

regardless of the choice of n and h.
Our primary theoretical contribution in this setting is summarized by the following Theorem
4.1.2 and its Corollary 4.1.3:

Notation 4.1.1 (Modified Vinogradov notations). Throughout this chapter, for A ≥ 0 and
B ≥ 0, we use occasionally A ≲a B as shorthand for the inequality A ≤ CaB for some constant
Ca depending only on a. The same goes for A ≳a B. [112, p.5]

Theorem 4.1.2. Let k ≥ 1 be an integer, assume d ≥ 3, and suppose the kernel K is a
k-vanishing kernel on Rd as specified in Definition 4.1.4.
Then, there is constant C such that for all integers s ∈ {1, 2, . . . , k−1}, any real number q > d,
and h ∈ (0, 1), the following bound holds:

E (W1(µ̂n,h, µ)) ≤ C

((
(Mq(µ))

1/2 + 1
)h1−d/2√

n
+ ∥p∥Hs

1(R
d)h

s+1

)
,

where the q-th moment of µ is defined as

Mq(µ) :=

∫
Rd

∥x∥q2 µ(dx). (4.7)

Moreover, the constant factor C can be chosen to depend only on the integers k, q and the
uniform norm ∥K∥∞ := supx |K(x)| of K.

Corollary 4.1.3. Assume that d ≥ 3. If the density p of µ satisfies that Md+1(µ) < ∞ and
∥p∥Hs

1(R
d) <∞, there exist an explicitly defined kernel measure estimator µ̃n and a constant C

such that:
E(W1(µ̃n, µ)) ≤ C × n−

1+s
d+2s , (4.8)

where the constant C only depends on d, ∥K∥∞,Md+1(µ), and ∥p∥Hs
1(R

d).
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We intentionally omit the cases d = 1 and d = 2, as these dimensions are already fully covered
by classical results regarding empirical measure approximations [46]. Besides, µ̂n,h is possibly
be a signed measure, but this will not affect the definition of W1 in (4.3).

Finally, we formalize the definition of ”k-vanishing kernel” used previously:

Definition 4.1.4 (k-vanishing kernel). Let k be a positive integer. A kernel function K : R+ →
R is said to be a k-vanishing kernel on Rd if, for every integer s ∈ {1, 2, . . . , k}, the kernel
satisfies: ∫

Rd

|K(∥x∥2)| ∥x∥s2 dx <∞, and

∫
Rd

K(∥x∥2) ∥x∥s2 dx = 0.

Within this context, our results partially overlap with those of [118, 90] in the case of compactly
supported measures under the 1-Wasserstein metric. For this case, compared to [118, 90],
we broaden the existing minimax results to include all probability densities possessing first
moments, without restrictions on the boundedness of their support. Besides, the estimators
given in [118, 90] are wavelet-based, while our choice is kernel estimators which are generally
believed to be more basic [62].

Besides, our estimator is minimax since:

Theorem 4.1.5. [90, Theorem 3] For any d ≥ 2, s ≥ 0 and constant C > 0, we have:

inf
µ̃

sup
p is supported in [0,1]d

∥p∥
Hs
1(Rd)

≤C .

E(W1(µ̃, µ)) ≳C,d,s n−
1+s
d+2s ,

where the infimum is taken over the space of all possible measure estimators µ̃ constructed from
a sample of n observations.

We now consider the scenario where the measure µ is supported on a compact manifold M of
dimension d ≥ 3 (without boundary), smoothly embedded into a Euclidean space (Rm, ∥ · ∥2).
Since M is smoothly embedded in Rm, it inherits a natural Riemannian metric induced by the
ambient Euclidean structure. With this metric, M becomes a Riemannian submanifold. We
denote by ρ the geodesic distance associated with this induced metric.

For any probability measure µ ∈ P(M) with density p with respect to the volume measure
on M. Let (X1, X2, ..., Xn) be a sample of n i.i.d random variables of µ. In this scenario, we
investigate the convergence of the kernel estimator µ̂Mn,h as the sample size n tends to infinity
and the smoothing bandwidth h decreases appropriately to zero:

µ̂Mn,h(dy) =
1

n

n∑
i=1

1

hd
K

(
∥Xi − y∥2

h

)
dy, (4.9)

where ∥ · ∥2 is the distance with respect to Rm, dy on the right side represents the volume
measure on M, and the kernel function K : R+ → R is also a measurable bounded function
with support in [0, 1] such that satisfies Eq (4.5).

Note that, unlike in the previous scenario (cf. Eq. (4.6)), the mass of µ̂Mn,h need not equal 1 in
general. To address this issue, the author in [37, p. 7] proposed replacing the kernel K by its
pointwise normalized version in the definition of the kernel estimator µ̂Mn,h. This normalization,
however, introduces additional approximation steps and complexity into their analysis. In our
treatment, we observe that such normalization may lead to avoidable computational complica-
tions. Hence, we retain the original kernel K and instead construct our estimation of µ via µ̂Mn,h
differently.

Our primary theoretical contribution in this setting is summarized by the following theorem
and corollary:
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Theorem 4.1.6. Let k ≥ 1 be an integer, assume d ≥ 3, and suppose the kernel K is a k-
vanishing kernel on Rd as specified in Definition 4.1.4. On top of that, we assume K is Lipschitz
on [0, 1].
Then, there is a constant C, such that for all integers s ∈ {1, 2, . . . , k− 1}, h ∈ (0, 1] and n, the
following bound holds:

E
(
W1(µ̂

M
n,h, µ̂

M
n,h(M)µ)

)
≤ C

(
h1−d/2√

n
+ ∥p∥Hs

1(M)h
s+1

)
,

where the Wasserstein distance is defined as in Eq (4.3).
Moreover, the constant factor C can be chosen to depend only on M ⊂ Rm, the integer k, the
uniform norm ∥K∥∞ := supx |K(x)| of K, and the Lipschitz constant of K

∣∣
[0,1]

.

Note that the random mass µ̂Mn,h(M) converges to 1 almost surely when h converges to 0,
regardless of n (cf. Lemma 4.3.16).

Corollary 4.1.7. Assume that d ≥ 3. If the density p of µ satisfies that ∥p∥Hs
1(R

d) <∞,
Then there exist an explicitly defined kernel measure estimator µ̃n such that:

E(W1(µ̃n, µ)) ≲d,∥p∥
Hs
1(Rd)

,s n−
1+s
d+2s , (4.10)

Moreover, almost surely,

lim sup
n→∞

n
1+s
d+2sW1(µ̃n, µ) = lim sup

n→∞
n

1+s
d+2s E(W1(µ̃n, µ)) <∞. (4.11)

In comparison with [37], we emphasize that when focusing on the practically relevant 1-Wasserstein
distance [10], the minimax results presented therein remain valid without imposing additional
conditions on uniform lower and upper bounds for probability densities. Additionally, we es-
tablish that our estimator achieves convergence almost surely at the same rate. To the best of
our knowledge, this stronger mode of convergence has not been previously demonstrated.
An additional refinement we introduced compared to [37], though of minimal practical signif-
icance, is the relaxed regularity requirement on the kernel function K. This adjustment was
made primarily to deepen our theoretical understanding of the problem. More specifically, many
calculations in [37] rely on a Taylor expansion up to relatively high order of K, which is a natural
approach within the context of manifold learning. However, we have always believed that there
must be a deeper geometric rationale behind why this seemingly ‘brutal’ Taylor expansion is
effective.
The remainder of this chapter is organized into two main sections. In Section 4.2, we address
the first setting—the minimax convergence rate for measure estimation in Rd. The proofs of
Theorem 4.1.2 and Corollary 4.1.3 will be given in this section. Similarly, in Section 4.3, we
examine the second setting—the minimax convergence rate for measure estimation on manifolds.
The proofs of Theorem 4.1.6 and Corollary 4.1.7 will be given in this section.

4.2 Minimax measure estimation in Rd

The goal of section is to give the proofs for Theorem 4.1.2 and Corollary 4.1.3. For the demon-
stration of Theorem 4.1.2, our primary idea is to control the approximation error W1(µ̂n,h, µ)
by treating each term in the majoration:

W1(µ̂n,h, µ) ≤ W1(µ̂n,h, µ̂h)︸ ︷︷ ︸
stochastic error term

+W1(µ̂h, µ)︸ ︷︷ ︸
bias term

, (4.12)

where:

µ̂h(dy) :=

(∫
Rd

p(x)h−dK

(
∥x− y∥2

h

)
dx

)
dy. (4.13)
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Remark 4.2.1. Informally, µ̂h = E(µ̂n,h).

To avoid repetition, in the rest of this section, we fix an integer k ≥ 1 and assume that:

Assumption 5. K is k-vanishing, the dimension d of M is at least 3, and s is a positive
integer smaller than k − 1.

Notation 4.2.2 (k-fold duplication). Given an element e of set E, in the rest of this chapter,
we denote by e×k the element (e, ..., e)︸ ︷︷ ︸

k times

of the cartesian product Ek.

Let us begin with giving an upper bound for the bias term in Eq (4.12).

4.2.1 Bias term estimation

Firstly, we prove that:

Theorem 4.2.3. There is a constant C depending only on k and ∥K∥∞ such that for all
compactly supported smooth function p, 1-Lipschitz function f , and s ∈ [0, k − 1] we have:∫

Rd

∫
Rd

1

hd
K

(
∥x− y∥2

h

)
f(x)(p(x)− p(y))dxdy ≤ Chs+1 × ∥p∥Hs

1
. (4.14)

Proof. For the sake of simplicity, we let p(s) denote ∇sp.
We consider first the case when s is even.
By Taylor’s expansion up to the order s, we see that:∫

y∈Rd

K

(
∥x− y∥

h

)
f(x)(p(y)− p(x))dy =

s∑
j=1

∫
y∈Rd

1

j!
K

(
∥x− y∥

h

)
f(x)p(j)(x)

[
(y − x)×j

]
dy

+

∫ 1

λ=0

(∫
y∈Rd

(1− λ)s−1

(s− 1)!
K

(
∥x− y∥

h

)
f(x)

(
p(s)(x+ λ(y − x))− p(s)(x)

)[
(y − x)×s

]
dy

)
dλ.

(4.15)

Because K is k vanishing for Rd, for every 1 ≤ j ≤ s ≤ k − 1,∫
y∈Rd

1

j!
K

(
∥x− y∥2

h

)
f(x)p(j)(x)

[
(y − x)×j

]
dy = 0,

where (y − x)×j ∈ (Rd)j denotes the k-fold duplication of y − x(cf. Notation 4.2.2).

Besides, by the change of variables: y → z−(1−λ)x
λ , we observe that:∫

y∈Rd

K

(
∥x− y∥

h

)
f(x)

(
p(s)(x+ λ(y − x))− p(s)(x)

)[
(y − x)×s

]
dy

=

∫
z∈Rd

K

(
∥x− z∥
λh

)
f(x)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

] 1
λd

dz. (4.16)

Let

A(λ) :=

∫
x∈Rd

∫
y∈Rd

K

(
∥x− z∥
λh

)
f(x)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

] 1
λd

dzdx.

Because s is even, by interchanging the role of z and x, we see that:

A(λ) = −
∫
x∈Rd

∫
y∈Rd

K

(
∥x− z∥
λh

)
f(z)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

] 1
λd

dzdx

=
1

2

∫
x∈Rd

∫
y∈Rd

K

(
∥x− z∥
λh

)
(f(x)− f(z))

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

] 1
λd

dzdx.
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On top of that, K is supported in [0, 1] and f is 1-Lipschitz. Therefore,

|A(λ)| ≤ 1

2
∥K∥∞

∫
Rd×Rd

1∥x−z∥2≤λh

λd
∥x− z∥s+1

(
∥p(s)(x)∥op + ∥p(s)(z)∥op

)
dxdz

= ∥K∥∞
(∫

Rd

∥p(s)(x)∥opdx
)(∫

z∈Rd

1|z|≤λh

λd
|z|s+1dz

)
= hs+1 × ∥K∥∞

(∫
Rd

∥p(s)(x)∥opdx
)(

λs+1

∫
z∈Rd

1|z|≤1|z|s+1dz

)
.

Therefore, we have the desired conclusion for s even.
Now, we consider the case when s is odd, which means that s−1, s+1 are both even. Therefore,
after we have shown previously, there is a constant C such that for all f 1-Lipschitz, we have:∫

Rd

∫
Rd

1

hd
K

(
∥x− y∥2

h

)
f(x)(p(x)− p(y))dxdy ≤ Chs × ∥p∥Hs−1

1
, (4.17)

and ∫
Rd

∫
Rd

1

hd
K

(
∥x− y∥2

h

)
f(x)(p(x)− p(y))dxdy ≤ Chs+2 × ∥p∥Hs+1

1
. (4.18)

Fix a 1-Lipschitz function f , we consider the linear mapping:

T : C∞
c (Rd) −→ R

p 7−→
∫

Rd

∫
Rd

1

hd
K

(
∥x− y∥2

h

)
f(x)(p(x)− p(y)).

We have that for all p ∈ C∞
c (Rd),

|Tp| ≤ Chs+2 × ∥p∥Hs+1
1 (Rd) , |Tp| ≤ Chs × ∥p∥Hs−1

1 (Rd).

Then, after Theorem 4.1.2 in [80], for all p,

|Tp| ≤ Chs+1∥p∥[Hs−1(Rd),Hs+11(Rd)]1/2
,

where [Hs−1(Rd), Hs+11(Rd)]1/2 the interpolation space of Hs−1(Rd) with Hs+11(Rd) with ex-
ponent 1/2.
Besides, after [80, Theorem 6.4.5], Hs

1(R
d) ≃ [Hs−1(Rd), Hs+11(Rd)]1/2, which implies that there

is a constant α such that for all p ∈ C∞:

∥p∥[Hs−1(Rd),Hs+11(Rd)]1/2
≤ α∥p∥Hs

1(R
d).

Therefore, we have the desired conclusion for s odd, which finishes the proof.

Remark 4.2.4. For the case where s is odd, an alternative approach to the above proof involves
establishing an upper bound for∫

Rd

∫
Rd

1∥x−y∥≤h∥ps−1(x)− ps−1(y)∥op∥x− y∥s−1
2 .

However, we think that carrying out this approach rigorously is rather tedious. Instead, we
opted for the interpolation argument presented above, which provides a more straightforward
and efficient justification.

Now, thanks to the above theorem, we have the following estimation for our bias term.

Corollary 4.2.5. Let k be an integer k ≥ 1 and assume that d ≥ 3. Then, there is a constant
C depending only on ∥K∥∞ and k such that for all integer s ∈ [0, k − 1],

W1(µ̂h, µ) ≤ C × hs+1 × ∥p∥Hs
1
. (4.19)
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4.2.2 Stochastic error term estimation

In this section, we treat the stochastic error in approximation error W1(µ̂h,n, µ̂h).
We begin with recalling a few results on Green functions in Rd which we will use intensively in
this section.

4.2.2.1 Premilinaries on Green functions in Rd

Theorem 4.2.6. [11] The Green’s function G(x, y) for Rd with the Laplace operator ∆ is a
fundamental solution to the Poisson equation:

∆G(x, y) = δ(x− y) ,

where δ is Dirac at 0. The explicit form of the Green’s function depends on the dimension d:

G(x, y) = −1

2
|x− y| d = 1,

G(x, y) = − 1

2π
log ∥x− y∥2 d = 2,

G(x, y) =
1

(d− 2)ωd
· 1

∥x− y∥d−2
2

d ≥ 3,

where ωd is the surface area of the unit sphere in Rd, given by ωd =
2πd/2

Γ(d/2) .

Then, for any function f ∈ L1 ∩ L∞, we denote by Gf(x) the integral:

Gf(x) :=

∫
Rd

G(x, y)f(y)dy. (4.20)

The following lemma will be useful to our estimation of functions of the form ∇Gf .

Lemma 4.2.7. There is a constant C ′ depending on d such that for all z,∣∣∣∣∫
Rd

h−d

ωd

(x− y)

∥x− y∥d2
K

(
∥z − x∥2

h

)
dx

∣∣∣∣ ≤ C ′×∥K∥∞×
(
h1−d1∥y−z∥2≤2h + ∥y − z∥1−d2 1∥y−z∥2>2h

)
.

(4.21)

Proof. If ∥y − z∥2 ≤ 2h, we observe that there are two possible situations for x: Either ∥z −
x∥2 ≤ h or ∥z − x∥2 > h. For the first situation, ∥y − x∥2 ≤ 3h. For the second situation,

K
(
∥z−x∥2

h

)
= 0.

Therefore, if ∥y − z∥2 ≤ 2h, we have:∣∣∣∣∫
Rd

h−d

ωd

(x− y)

∥x− y∥d2
K

(
∥z − x∥2

h

)
dx

∣∣∣∣ ≤h−d 1

ωd
× ∥K∥∞ ×

∫
BRd (y,3h)

1

∥x− y∥d−1
2

dx

=(ωd)
−1∥K∥∞h1−d

∫
BRd (0,3)

1

∥x∥d−1
2

dx

=(ωd)
−1∥K∥∞h1−d

∫
Sd−1

∫ 3

0

1

rd−1
rd−1drdθ

=3∥K∥∞h1−d.

If ∥y − z∥2 > 2h, again, there are two possible situations for x: Either ∥z − x∥2 ≤ h or
∥z − x∥2 > h. For the first situation, ∥x − y∥2 ≤ ∥z − y∥2 − ∥x − z∥2 ≥ 1

2∥y − z∥2. For the

second situation, K
(
∥z−x∥2

h

)
= 0.

Therefore, we have the desired conclusion for ∥y − z∥2 > 2h. Thus, we have finished the
proof.
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4.2.2.2 Upper bounds for Wasserstein distance using Green’s function

The following proposition gives the first upper bounder for 1-Wasserstein distance using Green
operator.

Proposition 4.2.8. For any two signed measures µ1 and µ2 on Rd with bounded densities p1
and p2 such that µ1(Rd) = µ2(Rd). If µ1 and µ2 are supported in a bounded domain B ⊂ Rd

with C1 boundary, we have:

W1(µ1, µ2) ≤
∫
B
|∇G(p1 − p2)|dx+ diam(B)

∫
∂B

|∇G(p1 − p2)|dx,

where diam(B) := supx,y∈B ∥x− y∥2 is the diameter of B and ∂B is the boundary of B.

Remark 4.2.9. Note that this inequality becomes an equality when B = [0, 1].

Proof of Proposition 4.2.8. For any f continuously differentiable and any point o ∈ B, by
Green-Ostrogradsky’s theorem:∫

B
f(p1 − p2)dx =

∫
B
(f − f(o))(p1 − p2)dx

=−
∫
B
⟨∇f,∇G(p1 − p2)⟩dx+

∫
∂B

(f − f(o))⟨∇G(p1 − p2), n⟩dx,

where n is the outward pointing vector of ∂B. The desired conclusion follows directly.

While the above proposition is sharp, to simply our calculations, we will use the following
proposition:

Proposition 4.2.10. For any two signed measures µ1 and µ2 on Rd with bounded densities p1
and p2 such that µ1(Rd) = µ2(Rd). If µ1 and µ2 are supported in a bounded domain B ⊂ Rd

with C1 boundary, we have:

W1(µ1, µ2) ≤
∫
B∗

|∇G(p1 − p2)|dx,

where

B∗ := B +BRd(0, 2diamB) = {x+ z : x ∈ B, |z| ≤ 2diamB}. (4.22)

Proof. Fix a point o ∈ B. For any f 1-Lipschitz on B such that f(o) = diam(B), we denote by
f∗ a function on B∗ defined as follows:

f∗(y) = (max
x∈B

(f(x)− ∥x− y∥2))+ ∀y ∈ B∗.

Because f is 1-Lipschitz, maxx∈B(f(x)− ∥x− y∥2) = f(y) for all y ∈ B. Indeeds, for all x and
y in B, we have that:

f(y) = f(x) + f(y)− f(x) ≥ f(x)− ∥x− y∥2.

Thus,

f∗ ≡ f on B.

Also, f(o) = diam(B), f(x) is positive on B. Moreover, for any y ∈ ∂B∗, minx∈B ∥y − x∥2 =
2diam(B). Therefore, maxx∈B(f(x)− ∥x− y∥2) ≤ 0 for all y ∈ ∂B∗. In other words,

f∗ = 0 on ∂B.
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Clearly, by construction, f∗ is 1-Lipschizt on B∗.
Thus, by Green–Ostrogradsky’s theorem, we have that for all f 1-Lipschitz on B such that
f(o) = diam(B), we have:∫

B
f(p1 − p2)dx =

∫
B∗
f∗(p1 − p2)dx

=−
∫
B∗

⟨∇f∗,∇G(p1 − p2)⟩dx+

∫
∂B∗

f∗⟨∇G(p1 − p2), n⟩dx,

=−
∫
B∗

⟨∇f∗,∇G(p1 − p2)⟩dx ≤
∫
B∗

|∇G(p1 − p2)|dx.

Therefore, the conclusion follows.

4.2.2.3 An upper bound for the stochastic term

Now, let us present the main result of this section which is:

Theorem 4.2.11. There is a constant C depending only on d, q (q > d) such that for all h ≤ 1,

E(W1(µ̂n,h, µ̂h)) ≤d,q

(√
Mq(µ) + 1

)
× 1√

n
× h1−d/2.

To prove this, we first treat a weakened version of the above theorem as a Lemma:

Lemma 4.2.12. Suppose that the underlying probability measure µ is supported in a bounded
open set B ⊂ Rd with C1 boundary. Then for all q > 1, we have:

E(W1(µ̂n,h, µ̂h)) ≲d C
′′ × ∥K∥∞ ×

√
|B∗| × 1√

n
× h1−d/2,

where B∗ := B +BRd(0, 2diam(B)). (cf. (4.22))

Proof of Lemma 4.2.12. For each x, we define :

px,h(y) :=
1

hd
K

(
∥x− y∥2

h

)
, ph(y) :=

(∫
Rd

K

(
∥x− y∥2

h

)
p(x)dx

)
dy. (4.23)

Recall that by definition of µ̂n,h, we have:

nµ̂n,h(dy) =
1

n

(
n∑
i=1

pXi,h(y)

)
dy,

Thus, after Proposition 4.2.10 and Hölder’s inequality, we have:

E(W1(µ̂n,h, µ̂h)) ≤ E

(∫
B∗

∣∣∣∣∇G( 1

n
(pX1,h + · · ·+ pXn,h)− ph

)∣∣∣∣(y)dy)

≤
√

|B∗|E

√∫
B∗

∣∣∣∣∇G( 1

n
(pX1,h + · · ·+ pXn,h)− ph

)∣∣∣∣2(y)dy


≤
√
|B∗|

√∫
B∗

1

n
E
(
|∇G(pX1,h)|

2(y)
)
dy.

Besides, after Lemma 4.2.7, we have that for each y,∫
B∗

E
(
|∇G(pX1,h)|

2(y)
)
dy

≲d

∫
B∗

×∥K∥∞ ×
(
h2−2dP(|X1 − y| ≤ 2h) + E(|X1 − y|2−2d × 1|X1−y|≥2h)

)
dy

≲d

∫
Rd

(C ′)2 × ∥K∥∞ ×
(
h2−2dP(|X1 − y| ≤ 2h) + E(|X1 − y|2−2d × 1|X1−y|≥2h)

)
dy.
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Then, by using Fubini to calculate first the integral with respect to y, we obtain that:

∫
B∗

E
(
|∇G(pX1,h)|

2(y)
)
dy

≲d∥K∥∞ ×
(
h2−2d × ωd

d
× (2h)d + ωd × (2h)2−d

)
≲d ∥K∥∞ × h2−d.

Thus, we have the desired conclusion.

We can now proceed to prove Theorem 4.2.11. This proof is inspired by [46].

Proof of Theorem 4.2.11. As long as we can prove that C does not depend on the choice of p,
we can assume without loss of generality that p is smooth for simplicity.
We fix for now the window size h and the number n- the size of random sample- and decompose
firstly Rd into

Rd =
∞⊔
j=0

Bj , (4.24)

where B0 = BRd(0, 1)- the ball centered at 0 with radius 1 of Rd, and

Bj = BRd(0, 2j)\BRd(0, 2j−1), (4.25)

for all j ≥ 1.(see Figure 4.1).

Figure 4.1: 2D Partition

For each j ≥ 0, let Nj and Xj
1 , ..., X

j
Nj

denote respectively the number of random points (Xi)
lying in the region Bj and these random points. Note that when Nj are fixed, in other words,

under an event {N0 = n0, N1 = n1, ...}, these random points Xj
i are independant and for each

j, (Xj
1 , ..., X

1
Nj

) are i.i.d. with distribution µj (see Definition (4.26)).
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Then, for each j, we denote by µj , µ̂jh the measures:

µj := µ(·|Bj) =
µ(dx)1Bj

µ(Bj)
. (4.26)

µx,h(dy) :=
1

hd
K

(
∥x− y∥2

h

)
dy. (4.27)

µ̂jh := E(µ
Xj

1 ,h
). (4.28)

Without loss of generality, for the sake of well-definedness, we assume that µ(Bj) > 0 for all j.
Recall that nµ̂n,h = µX1,h + µX2,h + · · ·+ µXn,h. Thus,

nµ̂n,h =
∑
j≥0

 Nj∑
i=1

µ
Xj

i ,h

. (4.29)

Hence, due to the triangle inequality and the convexity of Wasserstein distance, we have:

W1(µ̂n,h, µ̂h) ≤ W1

(
µ̂n,h,

∑
j≥0Njµ̂

j
h

n

)
+W1

(∑
j≥0Njµ̂

j
h

n
, µ̂h

)

≤
∑
j≥0

Nj

n
W1

(µ
Xj

1 ,h
+ µ

Xj
2 ,h

+ ...+ µ
Xj

Nj
,h

Nj
, µ̂jh

)
︸ ︷︷ ︸

=A

+W1

(∑
j≥0Njµ̂

j
h

n
, µ̂h

)
︸ ︷︷ ︸

=B

.

(4.30)

We will treat each term A and B separately.

Firstly, for A, after Lemma 4.2.12 and Hölder’s inequality, we know that:

E(A) ≲d ∥K∥∞ × E

∑
j≥0

√
Nj

n
×
√

|B∗
j |

× 1√
n
× h1−d/2

≤ ∥K∥∞ ×

∑
j≥0

√
µ(Bj)×

√
|B∗

j |

× 1√
n
× h1−d/2

≤ ∥K∥∞ ×
√∑

j≥0

2jqµ(Bj)×
√
2−jq|B∗

j | ×
1√
n
× h1−d/2.

And by our choice of (Bj) and q > d,∑
j≥0

2jqµ(Bj) ≤ 1 + 2qMq(µ),

∑
j≥0

2−jq|B∗
j | ≤

∑
j≥0

2−jq(3× 2q)d =
3d

1− 2d−q
.

Hence, we have bounded correctly A. Now for B, we observe that:

µ̂h = E(µ̂n,h) =
∑
j≥0

E

(
Nj

n
× µ̂jh

)
=
∑
j≥0

µ(Bj)µ̂
j
h.

Besides, for all 1-Lipschitz function f and measure ν such that ν(Rd) = 0, we have:∫
fν =

∫
(f(x)− f(0))ν(dx) ≤

∫
∥x∥2|ν|(dx).
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Therefore,

E(B) ≤ E

∫
Rd

∥x∥2

∑
j≥0

∣∣∣∣Nj

n
− µ(Bj)

∣∣∣∣|µ̂jh|(dx)


=
∑
j≥0

(
E

∣∣∣∣Nj

n
− µ(Bj)

∣∣∣∣)(∫
Rd

∥x∥2|µjh|(dx)
)

≤
∑
j≥0

1√
n

√
µ(Bj)

∫
Rd

∥x∥2|µjh|(dx).

On top of that,∫
Rd

∥x∥2|µjh|(dx) ≤
∫

Rd

∥x∥2
∣∣∣∣ 1

µ(Bj)

∫
Rd

h−dK

(
∥x− y∥2

h

)
p(y)1y∈Bjdy

∣∣∣∣dx
=

1

µ(Bj)

∫
Bj

(
h−d

∫
Rd

∥x+ y∥2
∣∣∣∣K(∥x∥2

h

)∣∣∣∣dx)p(y)dy
≲d

1

µ(Bj)
× ∥K∥∞ ×

∫
Bj

(h+ ∥y∥2)p(y)dy

≲d
1

µ(Bj)
× ∥K∥∞ ×

∫
Bj

(
h+ 2j

)
p(y)dy = ∥K∥∞ × (h+ 2j).

Hence,

E(B) ≲d
1√
n

∑
j≥0

√
µ(Bj)(h2 + 22j) ≲d

1√
n

√√√√√
∑
j≥0

2−j

∑
j≥0

2jh2µ(Bj) + 23jµ(Bj)


≲d

1√
n

√
1 + h2M1(µ) +M3(µ),

where M1(µ) and M3(µ) are respectively the first order moment and the third order moment
of µ (cf. Eq. (4.7)). Therefore, we imply the desired conclusion.

Proof of Theorem 4.1.2. This main theorem follows directly from Theorem 4.2.11 and Corollary
4.2.5.

Proof of Corollary 4.1.7. This Corollary follows directly from Theorem 4.1.2 by choosing h :=

hn = n
− 1

s+d/2 .

4.3 Minimax measure estimation on manifolds

The aim of this section is to establish Theorem 4.1.6 and Corollary 4.1.7.
Since the framework of this section is independent of that in Section 4.2, and for the sake of
simplicity (although by abuse of notation), we shall refer to µ̂Mn,h simply as µ̂n,h for the remainder
of this chapter.
Let F denote the space of all 1 Lipschitz functions f : M → R on M such that

∫
M f(x)dx = 0.

For any Borel signed measure ν on M, we define ∥ν∥F to be:

∥ν∥F := sup
f∈F

|ν(f)|. (4.31)

Thus, W1(µ̂n,h, µ̂n,h(M)µ) = ∥µ̂n,h − µ̂n,h(M)µ∥F .
Therefore, by triangle inequality, we have:

W1(µ̂n,h, µ̂n,h(M)µ) ≤ ∥µ̂n,h − µ̂h∥F + ∥µ̂h(M)µ− µ̂n,h(M)µ∥F + ∥µ̂h − µ̂h(M)µ∥F
≤ ∥µ̂n,h − µ̂h∥F︸ ︷︷ ︸

stochastic error

+|µ̂h(M)− µ̂n,h(M)|∥µ∥F + ∥µ̂h − µ̂h(M)µ∥F︸ ︷︷ ︸
bias

, (4.32)
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where:

µ̂h(dy) :=

(∫
M
h−dK

(
∥x− y∥2

h

)
p(x)dx

)
dy.

Note that, by definition of ∥ · ∥F , |µ̂h(M)− µ̂n,h(M)| ≤ ∥µ̂n,h − µ̂h∥F . Therefore, to give a
convergence rate for W1(µ̂n,h, µ̂n,h(M)µ), it is sufficient to control the stochastic error term
and the bias term in the right side of the above inequality, as an analogue to what we did in
the previous scenario.

This section is then organized as follows:

• In Section 4.3.1, we introduce a technical geometric result—Theorem 4.3.3. Although its
proof is somewhat lengthy, this theorem provides us various insights into many manifold-
related calculations, as discussed in Section 4.1.

• In Section 4.3.2, we present a preliminary analysis of the term W1(µ̂n,h, µ̂n,h(M)µ) and
provide an estimate for the ”bias” component of this term.

• In Section 4.3.3.1, we derive an estimate for the ”stochastic error” component of the same
term.

• Finally, in Section 4.3.4, we prove Theorem 4.1.6 and Corollary 4.1.7.

Let us begin with the technical result.

4.3.1 Morse lemma and its extension for manifold estimations

Recall the standard setting of a submanifold M embedded in a Euclidean space Rm. There
are two natural ways to measure distances between points on M. One is the geodesic distance,
which is coherent with the intrinsic geometry of the manifold, and the other is the Euclidean
distance provided by the ambient space Rm. While the geodesic distance is better aligned to
the underlying structure of M, the Euclidean distance is often preferred in practice due to its
practically computational advantage.

However, this practical choice is not without drawbacks. Since the Euclidean distance is not
intrinsic to the manifold M, it can introduce certain difficulties in proving the robustness
of estimators built on it. This discrepancy between the computational framework and the
geometric nature of the data may lead various additional computational complexity.

In this section, we present an attempt to mitigate this geometric inconsistency, by proposing a
family of coordinate systems on M whose construction is based on the Euclidean distance of
Rm. This family of coordinate systems is expected to be an analog, which translates better the
Euclidean distance in local computations, to the standard normal coordinates systems on M.

More precisely, we show that:

Theorem 4.3.1 (Morse coordinate system). Let M ⊂ Rm be a compact Riemannian subman-
ifold without border of Rm.
Then, there is a radius r > 0 such that for each point o ∈ M, there are an open subset Uo of
M and a local coordinate system xo = (x1o, ..., x

d
o) : Uo → BRd(0, r) centered at o such that:

i. ∥p− o∥22 =
(
x1o(p)

)2
+
(
x2o(p)

)2
+ ...+

(
xdo(p)

)2
for every point p ∈ Uo.

Moreover,

ii. This family of local coordinate systems is smooth up to isometry. In other words, for all
o, there is a isometry Io : Rd → ToM such that: o 7→ Io ◦ xo is smooth.
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Remark 4.3.2. Recall that a local coordinate system (or chart) is a homeomorphism (often
a diffeomorphism) from an open subset of a manifold to an open subset of Rd, where d is the
dimension of the manifold (cf. [78, p.4]). For the definition of the tangent space TM and
concepts in differential geometry, we refer to [78] as our primary source.

In this chapter, we refer these maps as Morse coordinate systems. The term Morse in the name
of this tool is intended to highlight its inspiration from Morse theory[82], representing a modest
extension of Morse’s lemma.

The first property of this family is precisely what we sought: in these local coordinate systems,
the Euclidean distances in the ambient space are largely preserved and can be translated into
equivalent Euclidean distances within the local coordinates. While the second property is im-
portant when one seeks to give uniform bounds for mathematical expressions using these local
coordinate systems.

Similar to how the existence of normal coordinate systems directly follows from the existence
and properties of the exponential map, the existence of these Morse coordinate systems is a
direct consequence of the following analog of the exponential map. This analog is carefully
designed for our end which is to work with Euclidean distances of ambient spaces.

In application, we have the following result:

Theorem 4.3.3. Let M ⊂ Rm be a Riemannian submanifold withour border of Rm. There
exists a smooth mapping m : M → M satisfying the following properties:

i. M := ⊔o∈MMo ⊂ TM and contains the image of the zero section of TM, and each set
Mo ⊂ ToM is star-shaped with respect to 0ToM, the zero vector of ToM.

ii. ∥o−m(o, v)∥2 = ∥v∥ for all o ∈ M, v ∈ ToM.

iii. For each o ∈ M, mo : Mo → M is a diffeomorphism onto its image.

To my humble knowledge, this theorem has not been proposed and proven.

Its proof is presented in Section 4.3.1.2. The proof of this theorem is based on the path method,
following the approach proposed by Palais in [13].

For practical applications, the Morse coordinate map can be used to approximate various kernel-
based integrals as follows:

Proposition 4.3.4. Let M be a d-dimensional smooth compact submanifold without border of
Rm and K : R+ → R be a k-vanishing (cf. Definition4.1.4)bounded function for Rd with support
in [0, 1].

Then, there are a constant h0 such that for all real number 0 < h < h0, all smooth function ϕ
on M, we have that :

sup
x∈M

∣∣∣∣∫
M

1

hd
K

(
∥x− y∥2

h

)
(ϕ(y)− ϕ(x))dy

∣∣∣∣ ≲M,k ∥K∥∞ × hk+1 × ∥ϕ∥Ck+1 , (4.33)

where ∥x− y∥2 is the Euclidean distance between x and y in Rm, ∥K∥∞ := sup |K|, and

∥ϕ∥Cl = sup
x

sup
0≤s≤k

∥∇sϕ(x)∥.

Notation 4.3.5. In Section of Morse charts, we write A ≲ B(with B > 0) to say that there is
a constant α depending only on k, ∥K∥∞,M ⊂ Rm.

Moreover, h0 and the constant factor in the above inequality only depend on k and the embedding
M ⊂ Rm. In other words, they only depend on k, M, m, and the relation between M and Rm.
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As shown in the statement of the above proposition and its later proof, Morse coordinate map
has some advantage in calculations. For example, we need not differentiate K up to power k to
have the desired approximation, hence, improving the majoration.

Before going into tedious technical details in Section 4.3.1.1 and Section 4.3.1.2, let us first give
the proof of Proposition 4.3.4.

Proof of Proposition 4.3.4. After Theorem 4.3.1, we consider the family of Morse coordinate
system (xo : Uo → BRd(0, r0))o∈M with a constant r0 > 0.

Choose h0 = r0 and shrink h0 if necessary so that xo(BRd(0, h0)) = M∩ BRm(o, h0) for all o.
(i.e, taking h0 = min(r0, τM)) , where τM is the reach of M.)

Then, for any o ∈ M, there is a smooth function ao : BRd(0, h0) → R+, which represents the
density of the volume form under the local coordinate xo, such that for all 0 < h < h0:∫

M
K

(
∥y − o∥2

h

)
(ϕ(y)− ϕ(o))dy =

∫
BRd (0,h)

K

(
∥y∥2
h

)
(ϕ(φo(y))− ϕ(φo(0)))ao(y)dy,

where φo is the local parametrization M that is associated to xo.

Besides, we have the following claim:

Claim 4.3.6. For all smooth function ϕ : Rd → R, we have:

1

hd

∫
Rd

K(∥z∥2/h)(ϕ(z)− ϕ(0))dz ≲k ∥K∥∞ × hk+1 × ∥ϕ∥Ck+1(Rd).

Proof of Claim. This follows directly from the Taylor’s expansion and the fact that K is sup-
ported in [0, 1].

Thus, we have concluded the proposition.

4.3.1.1 Morse’s lemma and some auxiliary lemmas

In this section, we recall the statement of Morse’s lemma and some auxiliary lemmas.

Theorem 4.3.7 (Lemma of Morse). [82, p.12] Let c be a nondegenerate critical point of the
function f : V → R, where V is an open subset of Rn. There exist a neighborhood U of c and a
diffeomorphism φ : (U, c) → (Rn, 0) such that

f ◦ φ−1(x1, . . . , xn) = f(c)−
i∑

j=1

x2j +

n∑
j=i+1

x2j .

In order to achieve our generalization in Theorem 4.3.3, we follow Palais’s method as presented
[13]. In this method’s perspective, the desired smooth embedding comes from the flow of a
time-dependent differential equations based on a family of vector fields (ξt)t. Thus, to arrive
at your end, we need several intermediate lemmas to construct the suitable vector fields. The
following lemma is the very first step.

Lemma 4.3.8 (Existence of a smooth vector field on tangent space). Let M be a smooth
manifold and f, g : TM → R be two smooth functions on the tangent space TM such that for
each o ∈ M, 0 is a critical point of g

∣∣
ToM and also a non-degenerate critical point of f

∣∣
ToM.

Then there is a smooth vector field ξ : U → TM on an open subset U =
⊔
o∈M Uo of TM

such that:

i. For each o ∈ M, ξ
∣∣
Uo

takes values ToM.

ii. Each set Uo is a neighborhood of 0ToM.
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iii. ∇ξofo = go with go := g
∣∣
ToM and fo := f

∣∣
ToM.

To prove this lemma, we do need the following lemma:

Lemma 4.3.9. Let V be a finite dimensional R-vector space and f, g : V → R be two smooth
functions on V such that 0 is a critical point of g and also a non-degenerate critical point of f .
Then, there is a way to associate each triple (f, g, V ) with a function: ξf,g,V : Uf,V → V such
that Uf,V is a neighborhood of 0 and

∇ξf,g,V (v)f(v) = g(v) ∀v ∈ Uf,V . (4.34)

Moreover, this choice of ξf,g,V is invariant up to vector space isomorphism, that is, if there are
a vector space isomorphism T : Ṽ → V and another triple (Ṽ , f̃ , g̃) such that f̃ = f ◦T, g̃ = g◦T
then:

T
(
Uf,V

)
= U f̃ ,Ṽ and T−1 ◦ ξf,g,V ◦ T = ξf̃ ,g̃,Ṽ .

We begin with the proof of Lemma 4.3.9.

Proof of Lemma 4.3.9. Note that for any smooth function h on a vector space V , we have the
following Taylor’s expansion:

h(v) = h(0) + (∇vh)(0) +

∫ 1

0
(1− s)∇2hsv(v, v)ds,

where ∇2hx : V × V → R is a bilinear map defined by: ∇2hx(v, w) = (∇v∇wh)(x).
Therefore, due to the fact that 0 is a critical point of both f and g, we have:

g(v) =

(∫ 1

0
(1− s)∇2gsv(v, v)ds

)
, and

(∇wf)(v) =

∫ 1

0
∇2fsv(v, w)ds.

Besides, when v = 0,
∫ 1
0 ∇2fsvds = ∇2f0 which is a nondegenerate bilinear form on V × V due

to the fact that 0 is a non-degenerate critical point of f .
Thus, if we choose:

Uf,V := {v ∈ V :

∫ 1

0
∇2fsvds is a nondegenerate bilinear form.} (4.35)

Then, Uf,V is an open neighborhood of 0 (because if we impose any inner product on V , then

Uf,V := {v ∈ V : det
(∫ 1

0 ∇2f(sv)ds
)
̸= 0}).

In consequence, due to our choice of Uf,V , for all v ∈ Uf,V , there is a unique wv ∈ V such that:(∫ 1

0
(1− s)∇2gsvds

)
(v′, v) =

(∫ 1

0
∇2fsvds

)
(v′, wv) ∀v′ ∈ V. (4.36)

Thus, there is a function: ξf,g,V : Uf,V → V such that Uf,V is a neighborhood of 0 and

∇ξf,g,V (v)f(v) = g(v) ∀v ∈ Uf,V . (4.37)

To establish invariance up to isomorphism, it suffices to observe that the defining equation (4.36)
of ξf,g,V is invariant up to isomorphism. More precisely, it is due to the invariance of derivatives.
For example, for all smooth function h : V → R, let h̃ = h ◦ T then for all x, v, w ∈ V :

∇2hx(v, w) = ∇2h̃T−1(x)(T
−1v, T−1w).
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Now, we provide the proof of Lemma 4.3.8.

Proof of Lemma 4.3.8. For each o ∈ M, by apply the Lemma 4.3.9 for each triple (fo, go, ToM)
where fo = f

∣∣
ToM and go = g

∣∣
ToM, we imply the existence of a vector field ξ : U → T (TM)

that satisfies i, ii and iii.

What is left is to prove that U ⊂ TM is open and that ξ is smooth.

Besides, these properties are local. (That is, they are satisfied if and only if for all o ∈ M, there
is an open neighborhood Uo of o such that

⊔
o∈Uo

Uo is open and that ξUo is smooth.)

Therefore, we can assume further that M is parallelizable (cf. [78, p. 179]) (Note that for each
o ∈ M, there is an open neighborhood of o that is parallelizable). More precisely, we assume
that

TM ∼= M× Rd,

where d is the dimension of M.

Thus, based on the above isomorphism and thanks to the invarance up to isomorphism of our
choice of ξ (due to Lemma 4.3.9), our problem is proven as soon as we show that:

Lemma 4.3.10. Let M be a smooth manifold and f, g : M× Rd → R be two smooth functions
such that for each o ∈ M, 0 is a critical point of g(o, ·) and also a non-degenerate critical point
of f(o, ·).
Then there is a smooth vector field ξ : U → Rd on an open subset U =

⊔
o∈M Uo of M× Rd

such that:

i. Each set Uo is a neighborhood of 0 in Rd.

ii. ∇ξo(v)fo(v) = go(v),

where ξo := ξ(o, ·) , fo := f(o, ·) and go := g(o, ·).

But as we show right below, this claim is true. Therefore, we have the desired conclusion.

Proof of Lemma 4.3.10. In order to prove this claim, recall that if we denote by H(h) the
Hessian matrix of a function h : Rd → R, then by definition,

∇2hx(v, v) = ⟨v,H(h)xv⟩.

Therefore, after the defining Eq 4.36, we have for each o ∈ M, and v ∈ Rd,(∫ 1

0
(1− s)H(go)svds

)
v =

(∫ 1

0
H(fo)svds

)
ξo(v), (4.38)

and

U =

{
(o, v)| det

(∫ 1

0
H(fo)svds

)
̸= 0

}
. (4.39)

Recall that (o, v) →
∫ 1
0 H(fo)svds is smooth due to the smoothness of f and that with v being

0,
∫ 1
0 H(fo)svd = H(fo)0 which is non-degenerate by hypothesis. Thus, U is open.

On top of that,

ξo(v) =

(∫ 1

0
H(fo)svds

)−1(∫ 1

0
(1− s)H(go)svds

)
v,

which is smooth on (o, v) ∈ U thanks to the smoothness of f and g.



4.3. MINIMAX MEASURE ESTIMATION ON MANIFOLDS 133

4.3.1.2 Proofs of Theorem 4.3.3 and Theorem 4.3.1

Proof of Theorem 4.3.3. Let e : E =
⊔
o∈M Eo ⊂ TM → M denote the exponential map of M.

Define the smooth functions f : E → R and A : TM → R by the equations:

f(v) =∥o− e(v)∥22, ∀o ∈ M, v ∈ Eo,

A(v) =∥v∥22, ∀v ∈ TM,

where in ∥ · ∥2 referes to the Euclidean distance of Rm, while ∥ · ∥2 in A(v) refers to the norm
in TM with respect to Riemannian structure.

Let W be an open subset of E such that its closure W is also contained in E and that 0ToM ∈ W
for all o ∈ M.

Let F : TM → R be a smooth extension of f
∣∣
W
.

Denote respectively by Fo, Ao the functions F
∣∣
ToM and A

∣∣
ToM.

Clearly, for each o ∈ M, 0 is a critical point of Fo and that 0 is a non-degenerate critical point
of A.

Besides, after Proposition 2.2 in [55], the second order of Taylor’s expansion of Fo −Ao is null.
Hence, the second order derivative of Fo must be equal to the one of Ao.

Thus, for all t ∈ (−3, 3) and o ∈ M, we define:

F to := Ao + t(Fo −Ao)

has a non-degenerate critical point at 0.

Therefore, after Lemma 4.3.8, for there is an open set U ⊂ TM such that U ∋ 0ToM for all
o ∈ M and that there is a smooth famility of smooth vector field (ξt, t ∈ (−2, 2)) on U such
that:

∇ξto(v)
F to = Ao(v)− Fo. (4.40)

Consider the following flow φ of the time-dependent smooth vector field ξt.

By the existence of the flow, there is an open set D = ⊔o∈MDo ⊂ (−2, 2) × U and a smooth
flow φ : D → U such that such that 0× U ⊂ D and that for all o ∈ M, x ∈ Do,

dφt
dt

(x) = ξto(φt(x)); φ0(x) = x. (4.41)

Claim 4.3.11. There is an open set V :=
⊔
o∈M Vo ⊂ U such that for all o ∈ M,

i. (−2, 2)× Vo ⊂ Do.

ii. 0ToM ⊂ Vo for all o ∈ M.

iii. Vo is star-shaped at 0ToM.

Proof of Claim 4.3.11. First, for the sake of simplicity, let us consider a Rd version of Equation
4.41 as follows:

dϕt

dt
= V t(ϕt), ϕ0(v) = v, (4.42)

for all (t, v) ∈ (−2, 2)×U0 for some open neighborhood U of 0 in Rd and time-dependent smooth
vector field Vt : U → Rd such that: V t(0) = 0.

We observe that the above ODE has a unique smooth solution (t, x) 7→ ϕt(x) on (−2, 2) × Ũ ,
where Ũ is defined by:

Ũ := {x ∈ Uo : ∥Vt(sx)∥ <
1

2
for all − 2 < t < 2, 0 < s < 1}.
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Therefore, for the Equation 4.41, we can conclude this lemma by choosing: V :=
⊔
o∈M V

where:

Vo := {v ∈ Do : sv ∈ Do for all 0 < s < 1 and sup
−2<t<2,0<s<1

∥ξt(sv)∥ < 1

2
}.

Let us continue the proof of Theorem 4.3.3.

Consider the the function Gt = F t(φt) on V . We observe that

G0(v) = F 0(φ0(v)) = A(v) = ∥v∥2,

and that (thanks to Eq 4.41 and Eq 4.40):

dGt

dt
=

dF t(φt)

dt
= (Ḟ t) ◦ (φt) +∇φ̇tF

t

= (F −A) ◦ (φ) +∇ξt(φt)F
t = (F −A) ◦ (φ) + (∇ξtF

t) ◦ (φt)
= 0.

Thus, G1(v) = ∥v∥2 for all v ∈ V .

In other words, φ1 : V → TM is a smooth map such that:

(F ◦ φ1)(v) = ∥v∥2.

That means, for all o ∈ M and v ∈ Vo ∩ Wo, we have:

∥o− e(v)∥2 = ∥v∥2. (4.43)

Besides, for each o, Eq (4.41) defines a flow on ToM. Thus, φo1 is a diffeomorphism onto its
image, where φo1 = φ1

∣∣
ToM.

In summary, thus far, we have shown that φ1 satisfies ii and iii.

In order to have i, we only need to shrink the domain of φ1.

The smoothness of φ1 comes from the fact that it is a solution of Eq 4.36.

Thus, we have the desired conclusion.

Proof of Theorem 4.3.1. Theorem 4.3.1 is a direct consequence of Theorem 4.3.3 because of
each open set U enough of the Riemannian manifold M, we have the smooth isometry:

TU ∼= U × Rd.

4.3.2 An estimation of bias term

To avoid repetition, in the rest of this section, we fix an integer k ≥ 1 and assume that:

Assumption 6. K is k-vanishing, the dimension d of M is at least 3, and s is a positive
integer smaller than k − 1.

µ̂h(dy) :=

(∫
M
h−dK

(
∥x− y∥2

h

)
p(x)dx

)
dy.

The main result of this section is as follows:
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Theorem 4.3.12. There are a constant C depending only on M ⊂ Rm, k and Lip(K) :=

supx,y∈R:x ̸=y
|K(x)−K(y)|

|x−y| such that for all h ∈ (0, 1,

∥µ̂h − µ̂h(M)µ∥F ≤ C × hs+1 × ∥p∥Hs
1(M),

where p is the density of µ.

In order to prove this theorem, we prove first its local version.

Proposition 4.3.13. Let d : Rd × Rd → R+ be any function such that

• d(x, y) = d(y, x) for all x, y.

• d(x, x) = 0 for all x.

• There is a constant C so that for all x and 1 ≤ j ≤ k − 1, we have:∣∣∣∣ 1j!
∫

Rd

h−dK

(
d(x, y)

h

)
(x− y)×jdy

∣∣∣∣ ≤ C × hk+1, (4.44)

where (x− y)×j is defined as in Notation 4.2.2.

• There is a constant C ′ such that C ′d(x, y) ≥ ∥x− y∥2 for all x, y.

• The third derivative of d2 is uniformly bounded.

Let a : Rd → Rd be another compactly supported smooth function.

Suppose that Lip(K) is finite. Then there is a constant C ′′ depending only on d, k, Lip(K), d,
and a such that for all integer s ∈ {0, ..., k − 1}, compactly supported smooth functions f and
p, and real positive number h, we have:

∫
Rd

∫
Rd

h−dK

(
d(x, y)

h

)
f(x)(p(y)− p(x))a(y)dxdy ≤ C ′′ × (∥f∥∞ + ∥∇f∥∞)× ∥p∥Hs

1(R
d).

Remark 4.3.14. Note that because d(x, x) = 0 for all x, under the boundedness of the third
derivative of d2, there is a constant C̃ such that for all x, y ∈ Rd and λ ∈ (0, 1), (cf. Lemma
4.3.15) ∣∣∣∣d(x, z − (1− λ)x

λ

)
− 1

λ
d(x, z)

∣∣∣∣ ≤ C̃

λ2
∥x− z∥22.

This fact will be used in the proof of Proposition 4.3.13. .

Proof of Proposition 4.3.13. The proof of this proposition follows the same steps as of Theorem
4.2.3. For the sake of simplicity, we let p(s) denote ∇sp.

We consider first the case when s is even.

By Taylor’s expansion up to the order s, we see that:∫
y∈Rd

K

(
d(x, y)

h

)
f(x)(p(y)− p(x))a(y)dy =

s∑
j=1

∫
y∈Rd

1

j!
K

(
d(x, y)

h

)
f(x)p(j)(x)

[
(y − x)×j

]
a(y)dy

+

∫ 1

λ=0

(∫
y∈Rd

(1− λ)s−1

(s− 1)!
K

(
d(x, y)

h

)
f(x)

(
p(s)(x+ λ(y − x))− p(s)(x)

)[
(y − x)×s

]
a(y)dy

)
dλ.

(4.45)
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Because of the hypothesis 4.44, by using Taylor’s expansion of the function a at x, we have that
for every 1 ≤ j ≤ s ≤ k − 1,∣∣∣∣∫

y∈Rd

1

j!
K

(
d(x, y)

h

)
f(x)p(j)(x)

[
(y − x)×j

]
a(y)dy

∣∣∣∣ ≤C,a h
k+1 × |f(x)| ×

∥∥∥p(j)(x)∥∥∥
op
.

Hence,∣∣∣∣∣∣
s∑
j=1

∫
x∈Rd

∫
y∈Rd

1

j!
K

(
d(x, y)

h

)
f(x)p(j)(x)

[
(y − x)×j

]
a(y)dydx

∣∣∣∣∣∣
≲C,a k × C × hk+1 × ∥f∥∞ × ∥p∥Hs

1(R
d). (4.46)

Then, by the change of variables: y → z−(1−λ)x
λ , we observe that:∫

y∈Rd

K

(
d(x, y)

h

)
f(x)

(
p(s)(x+ λ(y − x))− p(s)(x)

)[
(y − x)×s

]
a(y)dy

=

∫
z∈Rd

K

d
(
x, z−(1−λ)x

λ

)
h

f(x)(p(s)(z)− p(s)(x)
)[

(z − x)×s
]
a

(
z − (1− λ)x

λ

)
1

λd
dz (4.47)

Now, let

A′(λ) :=

∫
x∈Rd

∫
y∈Rd

K

d
(
x, z−(1−λ)x

λ

)
h

f(x)(p(s)(z)− p(s)(x)
)[

(z − x)×s
]
a

(
z − (1− λ)x

λ

)
1

λd
dzdx.

A′′(λ) :=

∫
x∈Rd

∫
y∈Rd

K

(
d(x, z)

λh

)
f(x)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

]
a

(
z − (1− λ)x

λ

)
1

λd
dzdx.

A(λ) :=

∫
x∈Rd

∫
y∈Rd

K

(
d(x, z)

λh

)
f(x)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

]
a(x)

1

λd
dzdx.

We will proceed to bound |A′(λ)−A′′(λ)|, |A′′(λ)−A(λ)| and A(λ).
Let us begin with |A′(λ)−A′′(λ)|. By the Lipschitz continuity of K and d, and the boundedness
condition on d, we have:

∣∣A′(λ)−A′′(λ)
∣∣

≤∥a∥∞ × ∥f∥∞
∫
x∈Rd

∫
y∈Rd

∣∣∣∣∣∣K
(
d(x, z)

λh

)
−K

d
(
x, z−(1−λ)x

λ

)
h

∣∣∣∣∣∣
(∥∥∥p(s)(z)∥∥∥

op
+
∥∥∥p(s)(x)∥∥∥

op

)
(∥x− z∥2)s

1

λd
dzdx

≤∥a∥∞ × C̃ × Lip(K)× ∥f∥∞
∫
x∈Rd

∫
y∈Rd

∥x− z∥22
λ2h

1∥x−z∥2≤C′λh

(∥∥∥p(s)(z)∥∥∥
op

+
∥∥∥p(s)(x)∥∥∥

op

)
×

(∥x− z∥2)s
1

λd
dzdx

=∥a∥∞ × 2C̃ × Lip(K)× ∥f∥∞
∫
x∈Rd

∫
y∈Rd

∥x− z∥22
λ2h

1∥x−z∥2≤C′λh

∥∥∥p(s)(z)∥∥∥
op
(∥x− z∥2)s

1

λd
dzdx,

where the indicator 1∥x−z∥2≤C′λh in the last two lines comes from Remark 4.3.14 and the fact
that K is supported in [0, 1].
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Therefore,∣∣A′(λ)−A′′(λ)
∣∣ ≲d,C′,a C̃ × Lip(K)× ∥f∥∞ × hd+s+1 × λs × ∥p∥Hs

1(R
d). (4.48)

Next, for |A′′(λ)−A(λ)|, we have:∣∣A′(λ)−A′′(λ)
∣∣

≤∥f∥∞
∫
x∈Rd

∫
y∈Rd

∣∣∣∣K(d(x, z)

λh

)∣∣∣∣(∥∥∥p(s)(z)∥∥∥op + ∥∥∥p(s)(x)∥∥∥op
)
(∥x− z∥2)s

1

λd

∣∣∣∣a(x)− a

(
z − (1− λ)x

λ

)∣∣∣∣dzdx.
≤Lip(a)× ∥f∥∞

∫
x∈Rd

∫
y∈Rd

∣∣∣∣K(d(x, z)

λh

)∣∣∣∣(∥∥∥p(s)(z)∥∥∥op + ∥∥∥p(s)(x)∥∥∥op
)
(∥x− z∥2)s

1

λd
∥z − x∥2

λ
dzdx.

≤Lip(a)× ∥f∥∞ × ∥K∥∞
∫
x∈Rd

∫
y∈Rd

1∥x−z∥≤C′h

(∥∥∥p(s)(z)∥∥∥
op

+
∥∥∥p(s)(x)∥∥∥

op

)
(∥x− z∥2)s

1

λd
∥z − x∥2

λ
dzdx.

Therefore,∣∣A′′(λ)−A(λ)
∣∣ ≲d,C′,a,C̃ C̃ × ∥K∥∞ × ∥f∥∞ × hd+s+1 × λs × ∥p∥Hs

1(R
d). (4.49)

Now, we bound A(λ).
Because s is even, by interchanging the role of z and x, we see that:

A(λ) = −
∫
x∈Rd

∫
y∈Rd

K

(
d(x, z)

λh

)
f(z)

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

]
a(z)

1

λd
dzdx

=
1

2

∫
x∈Rd

∫
y∈Rd

K

(
d(x, z)

λh

)
(a(x)f(x)− a(z)f(z))

(
p(s)(z)− p(s)(x)

)[
(z − x)×s

] 1
λd

dzdx

On top of that, we have that K is supported in [0, 1] and C ′d(x, y) ≥ ∥x− y∥2 for all x and y.
Therefore,

|A(λ)| ≤ 1

2
∥K∥∞ × Lip(af)×

∫
Rd×Rd

1∥x−y∥2≤λC′h

λd
∥x− z∥s+1

(
∥p(s)(x)∥op + ∥p(s)(z)∥op

)
dxdz

= ∥K∥∞ × Lip(af)×
(∫

M
∥p(s)(x)∥opdx

)(∫
z∈Rd

1∥z∥2≤C′λh

λd
|z|s+1dz

)
= hs+1 × ∥K∥∞ × Lip(af)×

(∫
Rd

∥p(s)(x)∥opdx
)(

λs+1

∫
z∈Rd

1|z|≤C′ |z|s+1dz

)
. (4.50)

Therefore, we have the desired conclusion for s even.
For s odd, we only have to follow the same interpolation argument presented in Proof of Theorem
4.2.3. Therefore, we have the desired conclusion for all s.

Now, we are ready to give the proof of Theorem 4.3.12.

Proof of Theorem 4.3.12. Let µ̃h denote:

µ̃h(dy) = ηh(y)p(y)dy,

where ηh(y) =
∫
M h−dK

(
∥x−y∥2

h

)
dx.

Then after Lemma 4.3.16, we have that:

∥µ̃h − µ̂h(M)µ∥F ≤ ∥µ̃h − µ∥F + ∥µ− µ̂h(M)µ∥F ≲M,∥K∥∞ hk.

Hence, it is sufficient to give an upper bound for ∥µ̂h − µ̃h∥F .
Recall that by definition,
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∥µ̂h − µ̃h∥F = sup
f∈F

(∫
M

∫
M
h−dK

(
∥x− y∥2

h

)
f(x)(p(y)− p(x))dxdy

)
Consider a finite smooth partition of unity (Ui, τi : M → R)1≤i≤N of M , that is, (Ui)1≤i≤N is
an open over of M and

∑N
i=1 τi(x) = 1 for all x with τi being supported in Ui, such that there

is a local chart φi : Ui → Rd of M. We will use extensively this family of local charts in the
later proof.
Clearly, for each 1-Lipschitz function f : M → R and each i, τif is also a Lipschitz function
with Lipschitz coefficient

∥τi∥∞ + ∥∇τi∥∞∥diam(M)∥∞,
where we have the used that fact that for all x,

|f(x)| =
∣∣∣∣f − 1

vol(M)

∫
M
f(y)dy

∣∣∣∣ = ∣∣∣∣f − 1

vol(M)

∫
M
(f(x)− f(y))dy

∣∣∣∣ ≤ sup
x,y

ρ(x, y) = diam(M).

Define:

Fi := {f : M → | Lip(f) ≤ ∥τi∥∞ + ∥∇τi∥∞∥diam(M)∥∞ and supp(f) ⊂ Ui}.

Because of the decomposition f =
∑N

i=1 fτi, we have that:

∥µ̂h − µ̃h∥F ≤
N∑
i=1

sup
f∈Fi

(∫
M

∫
M
h−dK

(
∥x− y∥2

h

)
f(x)(p(y)− p(x))dxdy

)
.

Thus, the initial problem reduces to bound individually each term

sup
f∈Fi

(∫
M

∫
M
h−dK

(
∥x− y∥2

h

)
f(x)(p(y)− p(x))dxdy

)
.

Without loss of generality, assume that y is sufficiently small so that for all i, for all x ∈ supp τi,:

{y ∈ M : ∥x− y∥2 ≤ h} ⊂ Ui.

Then, fix an integer i ∈ [1, N ], by considering the local representation, we see that:

sup
f∈Fi

(∫
M

∫
M
h−dK

(
∥x− y∥2

h

)
f(x)(p(y)− p(x))dxdy

)
= sup
f∈Fi

(∫
Ui

∫
Ui

h−dK

(
∥x− y∥2

h

)
f(x)(p(y)− p(x))dxdy

)
= sup
g∈Gi

(∫
φ(Ui)

∫
φ(Ui)

h−dK

(
di(x, y)

h

)
g(x)(p̃(y)− p̃(x))a(x)a(y)dxdy

)

= sup
g∈G̃i

(∫
φ(Ui)

∫
φ(Ui)

h−dK

(
di(x, y)

h

)
g(x)(p̃(y)− p̃(x))a(y)dxdy

)
.

where p̃ is the local representation of p under the chart φi, d is defined on φi(Ui) such that :

di(φi(x), φi(y)) = ∥x− y∥2 ∀x, y ∈ Ui, (4.51)

and a is the local representation of the density of the volume measure of M, Gi := {f ◦ φ−1
i :

φ(Ui) → R | f ∈ Fi}, and G̃i := {af : f ∈ Gi}.
However, this is exactly the mathematical expression we have studied in Proposition 4.3.13.
Therefore, in order to have the desired conclusion, it is sufficient to check that if function
di : φ(Ui) × φ(Ui) → R+ is extensible to a function d : Rd × Rd → R+ that satisfies all the
hypothesis in Proposition 4.3.13.
Besides, the closure of φ(Ui) is compact. Therefore, for a such d exists, it is sufficient that di
verifies all the hypothesis in Proposition 4.3.13, which is true due to the fact that
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• (x, y) 7→ ∥x− y∥22 is a smooth function on M×M.

• and that we have Proposition 4.3.4.

Therefore, we have the desired conclusion.

Lemma 4.3.15. Under the hypothesis of Proposition 4.3.13, we have that there is a constant
C̃ such that for all x, y ∈ Rd and λ ∈ (0, 1), (cf. Lemma 4.3.15)∣∣∣∣d(x, z − (1− λ)x

λ

)
− 1

λ
d(x, z)

∣∣∣∣ ≤ C̃

λ2
∥x− z∥22.

Proof. It is sufficient to prove this estimation for x = 0, let F (z) := d(0, z). We have that
F : Rd → R is continuously differentiable, F ≥ 0, and that F (0) = 0. Hence, ∇F (0) = 0.
Therefore, by using Taylor’s expansion to the second order, we have:∣∣∣∣F (z/λ)− 1

λ2
F (z)

∣∣∣∣ = 1

2

∣∣∣∣ 1λ2
∫ 1

0
∇2F (sz/λ)(z×2)ds− 1

λ2

∫ 1

0
∇2F (sz)(z×2)ds

∣∣∣∣
≤ ∥z∥32

2λ2
sup
x∈Rd

∥∇3F (x)∥op.

Besides, under the given hypothesis, C ′√F (z) ≥ ∥z∥2. Hence,∣∣∣∣d(0, z/λ)− 1

λ
d(0, z)

∣∣∣∣ ≤ ∥z∥32
2λ2

supx∈Rd ∥∇3F (x)∥op
2C ′∥z∥2/λ

=
supx∈Rd ∥∇3F (x)∥op

4C ′ × ∥z∥22/λ,

Therefore, we have the desired conclusion.

Lemma 4.3.16 (An estimation lemma). Let ηh(y) =
∫
M h−dK

(
∥x−y∥2

h

)
dx, then there is a

constant C depending only on ∥K∥∞ and M such that for all x ∈ M and h ∈ (0, 1), we have:

|ηh(x)− 1| ≤ Chk.

Proof. Consider a family of Morse charts (φx : Ux → BRd(0, r), x ∈ M). For any point x ∈ M,
let (z1, z2, . . . , zd) represent the local coordinates in the chart φx. In this context, let (aij)
denote the local representation of the Riemannian metric on M.

Given our choice of local chart, for any h < r, it holds that∫
M

1

hd
K

(
∥x− y∥2

h

)
dy =

∫
Rd

1

hd
K

(
∥z∥2
h

)√
det(aij(z)) dz,

Therefore, as in Proof of Proposition 4.3.4, it is sufficient to demonstrate that:

det(aij(0)) = 1.

We first prove that:

det(aij(0)) =
1

det(∇2(F )(x))
, (4.52)

where F (y) := 1
2∥x− y∥22.
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Recall that ∇2(F )(x) is a bilinear form on the tangent space TMx and ( ∂
∂z1

∣∣
x
, . . . , ∂

∂zd

∣∣
x
) forms

a linear basis of TMx. Therefore, by definition of the determinant,

det(∇2(F )(x)) =
det
(
∇2(F )(x)[ ∂

∂zi
, ∂
∂zj

]
)

det
(
⟨ ∂
∂zi
, ∂
∂zj

⟩
) =

det
(
∇2(F )(x)[ ∂

∂zi
, ∂
∂zj

]
)

det(aij(0))
. (4.53)

Furthermore, since x is a critical point of F , for any i and j, by definition of Hessian,

∇2(F )(x)[
∂

∂zi
,
∂

∂zj
] = ∂j∂i(F ◦ φ−1

x ), (4.54)

which simplifies to 1 if i = j and 0 otherwise, given that F ◦ φ−1
x (z) = 1

2∥z∥
2
2.

Now, we prove that

det(∇2(F )(x)) = 1

Indeed, we will reuse the result in Eq 4.53 but with another local chart different from φx.
Consider a normal coordinate system φ : U → Rd around a neighborhood U of x such that
φ(x) = 0, and let (bij) denote the local representation of the Riemannian metric on M under
this normal coordinate chart.

Then by properties of normal coordinates, we have that bij(0) = 1 for all i = j and 0 otherwise.
Therefore,

det(bij(0)) = 1.

Besides,

∂j∂i(F ◦ φ−1)
∣∣
0
=
〈
∂i(φ

−1)
∣∣
0
, ∂j(φ

−1)
∣∣
0

〉
Rm ,

where φ−1 is regarded as a function from φ(U) to Rm.
On top of that, because the Riemannian metric of M is induced by Rm, we have:〈

∂i(φ
−1)
∣∣
0
, ∂j(φ

−1)
∣∣
0

〉
Rm =

〈
∂i(φ

−1)
∣∣
0
, ∂j(φ

−1)
∣∣
0

〉
M ,

where ∂i(φ
−1)
∣∣
0
, ∂j(φ

−1)
∣∣
0
in right side are understood as tangent vector of M.

But, by definition, bij(0) =
〈
∂i(φ

−1)
∣∣
0
, ∂j(φ

−1)
∣∣
0

〉
M.

Thus,

det(∇2(F )(x)) = 1.

Therefore, we have the desired conclusion.

Remark 4.3.17. Note that the most precise way to handle the induced Riemannian metric is
through the language of immersions. In particular, for the above proof, the expression should
technically be written as F ◦ ι ◦ φ−1

x , where ι is the immersion M ↪→ Rm. However, throughout
this chapter, we have implicitly identified M with ι(M) and thus have omitted explicit reference
to ι. To maintain consistency, the proof above does not mention ι at all. Nonetheless, this
choice of notation may cause confusion regarding how the induced metric works, and it is worth
keeping in mind that the immersion ι underlies the identification of M with its image in Rm.

4.3.3 An estimation of stochastic term

The main result of this section is as follows:

Theorem 4.3.18. For all n and h ∈ (0, 1], we have:

E
(
∥µ̂n,h − µ̂h∥F

)
≲M ∥K∥∞

1√
n
h1−d/2. (4.55)

Before giving its proof, we begin with a preliminary on Green functions on manifolds.
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4.3.3.1 A preliminary on Green functions on manifolds

On compact Riemannian manifolds, we have many estimation results analogues to what we
have in Rd. We begin first with the existence of Green functions.

Theorem 4.3.19. [11, ch. 4] The Green’s function G(x, y) : M × M → R for M with the
Laplace-Beltrami operator ∆ is a fundamental solution to the Poisson equation in distribution
sense. That is, for all smooth function f ∈ C∞(M) such that

∫
M f(x)dx = 0,∫

M
G(x, y)∆f(y)dy = f(x).

Then if the dimension d of M is bigger than or equal to 3, this function G exists and is smooth
on (M×M)\diag(M), where diag(M) := {(x, y)|x ∈ M} .
Moreover, there is a constant C depending only on M such that:

|G(x, y)| ≤ Cρ(x, y)2−d , ∥∇1G(x, y)∥2 ≤ Cρ(x, y)1−d , for all x, y ∈ M, (4.56)

where ∥ · ∥2 in the above inequality denotes the norm of tangent vectors and ∇1 denotes the
derivative on the first variable.
In particular, for all x, y 7→ ∥∇1G(x, y)∥2 is L1(M,dx) and continuous on M\{x}.

Then, for any function f ∈ L∞, we denote by Gf(x) the integral:

Gf(x) :=

∫
M
G(x, y)f(y)dy. (4.57)

Then, we have the following regularity result:

Proposition 4.3.20. If f ∈ L∞, Gf is differentiable and for all x,

∇Gf(x) =
∫
M

∇1G(x, y)f(y)dy.

In particular, x 7→ ∥∇Gf(x)∥2 is L∞.

Proof. Fix a point x ∈ M. Let γ : [0, 1] → M be any differential curve such that γ(0) = x and
γ′(0) = v ∈ TxM and that ∥v∥ = 1.
Then for any radius r > 0, thanks to the smoothness of G and the compactness of M, we have
that:

lim sup
t→0+

∣∣∣∣t−1(Gf(γ(t))−Gf(x))−
∫
M

⟨∇1G(x, y), v⟩f(y)dy
∣∣∣∣

≤ lim sup
t→0+

∣∣∣∣∣
∫
BM(x,r)

(
t−1(G(γ(t), y)−G(x, y))− ⟨∇1G(x, y), v⟩

)
f(y)dy

∣∣∣∣∣+
lim sup
t→0+

∣∣∣∣∣
∫
M\BM(x,r)

(
t−1(G(γ(t), y)−G(x, y))− ⟨∇1G(x, y), v⟩

)
f(y)dy

∣∣∣∣∣
= lim sup

t→0+

∣∣∣∣∣
∫
BM(x,r)

(
t−1(G(γ(t), y)−G(x, y))− ⟨∇1G(x, y), v⟩

)
f(y)dy

∣∣∣∣∣+ 0

≤∥f∥∞

(∫
BM(x,r)

∥∇1G(x, y)∥2dy + lim sup
t→0+

t−1

∫
BM(x,r)

(∫ 1

0
∥∇1G(γ(t))∥2dt

)
dy

)

≤∥f∥∞

(∫
BM(x,r)

∥∇1G(x, y)∥2dy + sup
x′∈BM(x,r)

t−1

∫
BM(x,r)

∥∥∇1G(x
′)
∥∥
2
dy

)

≤2∥f∥∞ × sup
x′∈M

∫
BM(x′,2r)

∥∥∇1G(x
′, y)

∥∥
2
dy.
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Besides, thanks to Theorem 4.3.19, for all x′,∫
BM(x′,2r)

∥∥∇1G(x
′, y)

∥∥
2
dy ≲M r.

Therefore, by taking r → 0+, we have the desired conclusion.

Then, thanks to the above estimation of the gradient of Green function in Theorem 4.3.19, we
have the following lemma:

Lemma 4.3.21. There is a constant C depending on M such that for all z,∫
M
h−d∥∇1G(x, y)∥ × 1ρ(x,z)≤hdx ≤ C ×

(
h1−d1ρ(y,z)≤2h + ρ(y, z)1−d1ρ(y,z)>2h

)
. (4.58)

Proof of Lemma 4.3.21. By using Theorem 4.3.19, the proof of this lemma is the same as the
proof of Lemma 4.2.7.

Lemma 4.3.22. For all 1-Lipschitz function f ∈ F and g ∈ L∞, we have:∫
M
f(x)g(x)dx ≤

∫
M

∥∇G(g)(x)∥2dx.

Proof of Lemma 4.3.3.1 . For any f ∈ C∞(M) smooth such that
∫
M f = 0, we have that:∣∣∣∣∫

M
⟨∇f(x),∇Gg(x)⟩

∣∣∣∣ ≤ ∥∇f∥∞
∫
M

∥∇G(g)(x)∥2dx, (4.59)

where ∥∇f∥∞ := supx ∥∇f(x)∥x.
Besides, by Fubini and Theorem 4.3.19, we have:

−
∫
M

⟨∇f(x),∇Gg(x)⟩ =
∫
M

∆f(x)Gg(x)dx

=

∫
M×M

∆f(x)G(x, y)g(y)dydx =

∫
M
f(y)g(y)dy. (4.60)

Therefore, for all f ∈ C∞(M) smooth, we have:∣∣∣∣∫
M

⟨∇f(x),∇Gg(x)⟩
∣∣∣∣ ≤ ∥∇f∥∞

∫
M

∥∇G(g)(x)∥2dx.

Thus, by the density of C∞(M), we have the desired conclusion.

4.3.3.2 Proof of the main result

In this section, we give the proof of Theorem 4.3.18.

Proof of Theorem 4.3.18. By Lemma 4.3.3.1, we have that:

W1(µ̂n,h, µ̂h) ≤
∫
M

|∇G(p̂n,h − p̂h)|,

where

p̂n,h(y) :=
1

n

n∑
i=1

h−dK

(
∥Xi − y∥2

h

)
,

p̂h(y) :=

∫
M
h−dK

(
∥x− y∥2

h

)
p(x)dx.
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Hence, by Cauchy-Schwarz’s inequality,

E(W1(µ̂n,h, µ̂h))
2 ≤ vol(M)

∫
M

E
(
∥∇G(p̂n,h − p̂h)(y)∥22

)
dy.

Note that p̂n,h = 1
n

∑n
i=1 pXi,h(y), with pXi,h(y) := h−dK

(
∥X1−y∥2

h

)
. Therefore,∫

M
E
(
∥∇G(p̂n,h − p̂h)(y)∥22

)
dy

≤ 1

n

∫
M

E
(
|∇GpX1,h(y)|

2
)
dy =

h−2d

n

∫
M

E

(∣∣∣∣∫
M

∇1G(y, z)K

(
∥X1 − z∥2

h

)
dz

∣∣∣∣2
)
dy

≤h
−2d

n

∫
M

E

[(∫
M

∥∇1G(y, z)∥2

∣∣∣∣K(∥X1 − z∥2
h

)∣∣∣∣dz)2
]
dy

≤h
−2d

n
× ∥K∥2∞ ×

∫
M

E

[(∫
M

∥∇1G(y, z)∥21ρ(X1,z)≤Chdz

)2
]
dy

where C is the constant depending only on M ⊂ Rm such that for all x, y:

ρ(x, y) ≤ C∥x− y∥2.

Thus, from Lemma 4.3.21, we imply that:

E(W1(µ̂n,h, µ̂h))
2

≲M
1

n
× ∥K∥∞ ×

∫
M

E
(
h1ρ(X1,y)≤2h + hdρ(X1, y)

1−d1ρ(X1,y)>2h

)2
dy

≤ 2

n
× ∥K∥∞ × h−2d × E

[∫
M

(
h21ρ(X1,y)≤2h + h2dρ(X1, y)

2−2d1ρ(X1,y)>2h

)
dy

]
≲M

1

n
h−2d

[
h2 × hd + h2dh1−d

]
.

Therefore, we have the desired conclusion.

4.3.4 Conclusion

We now can conclude with the proofs of the main results.

Proof of Theorem 4.1.6 and Corollary 4.1.7. The results of Theorem 4.1.6 follow directly from
Theorem 4.3.12 and Theorem 4.3.18.
The first part of Corollary 4.1.7 follows directly from Theorem 4.3.18 after choosing hn =
n−1/(s+d/2) and µ̃n = 1

µ̂n,hn (M) µ̂n,hn . Note that as shown in Lemma 4.3.16, there a deterministic

constant C depending only on ∥K∥∞ and M such that for all n:

|µ̂n,hn(M)− 1| ≤ Chkn.

For the almost sure convergence, it is sufficient to show that there is constant C ′, C ′′ > 0 such
that for all n and t,

P(|W1(µ̂n,hn , µ̂n,h(M)µ)− E(W1(µ̂n,hn , µ̂n,hn(M)µ))| ≥ t) ≤ C ′′ exp
(
−C ′nt2

)
,

Because this, with Borel-Cantelli theorem, implies that almost surely,

lim sup
n→∞

1√
n ln(n)

|W1(µ̂n,hn , µ̂n,h(M)µ)− E(W1(µ̂n,hn , µ̂n,hn(M)µ))| = 0.
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Let X ′
1 be a copy of X1 and independent of X1, X2, ..., Xn. Consider:

µ̂′n,hn(dy) :=
h−d

n

(
K

(
∥X ′

1 − y∥2
h

)
+

n∑
i=2

K

(
∥Xi − y∥2

h

))
dy.

We have that:

W1(µ̂n,hn , µ̂n,hn(M)µ)−W1(µ̂
′
n,hn , µ̂

′
n,hn(M)µ)

≤h
−d
n

n
sup

f :M→R : 1−Lipschitz∫
M f(x)dx=0

(∫
M
K

(
∥X1 − y∥2

hn

)
f(y)dy −

∫
M
K

(
∥X ′

1 − y∥2
hn

)
f(y)dy

)

≤∥K∥∞
n

diam(M) sup
x
Ahn(x),

where Ah(x) = h−d
∫
M 1∥x−y∥2≤hdy.

Therefore, by McDiarmid’s inequality, we have for all t ≥ 0

P(|W1(µ̂n,hn , µ̂n,h(M)µ)− E(W1(µ̂n,hn , µ̂n,hn(M)µ))| ≥ t) ≤ exp
(
−Cnnt2

)
,

where

Cn =
2

(∥K∥∞diam(M) supxAhn(x))
2 .

On top of that, limh→0 supxAh(x) = vol(BRd(0, 1)). Therefore, we have the desired conclusion
for the almost sure convergence.
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Birkhäuser Boston, Inc., Boston, MA, 1992.

[42] Durmus, A., and Moulines, E. Nonasymptotic convergence analysis for the unadjusted Langevin algo-
rithm. Ann. Appl. Probab. 27, 3 (2017), 1551–1587.

[43] Elworthy, K. D. Stochastic differential equations on manifolds, vol. 70 of Lond. Math. Soc. Lect. Note
Ser. Cambridge University Press, Cambridge. London Mathematical Society, London, 1982.

[44] Evans, L. Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, 1998.

[45] Figalli, A., and Glaudo, F. An invitation to optimal transport, Wasserstein distances, and gradient
flows. EMS Textbooks in Mathematics. EMS Press, Berlin, [2021] ©2021.

[46] Fournier, N., and Guillin, A. On the rate of convergence in wasserstein distance of the empirical
measure. Probability Theory and Related Fields 162, 3-4 (2015), 707–738.

[47] Frogner, C., Zhang, C., Mobahi, H., Araya-Polo, M., and Poggio, T. A. Learning with a wasser-
stein loss. In Advances in Neural Information Processing Systems 28 (NIPS 2015) (2015), pp. 2053–2061.

[48] Gall, J.-F. L. Brownian motion, martingales, and stochastic calculus, french ed., vol. 274 of Graduate
Texts in Mathematics. Springer, [Cham], 2016.



BIBLIOGRAPHY 147

[49] Gao, F., Guillin, A., and Wu, L. Bernstein-type concentration inequalities for symmetric markov
processes. Theory of Probability & Its Applications 58, 3 (2014), 358–382.

[50] Gao, R., Xie, L., Xie, Y., and Xu, H. Robust hypothesis testing using wasserstein uncertainty sets. In
Advances in Neural Information Processing Systems 31 (NeurIPS 2018) (2018), pp. 7919–7929.
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[96] Peyre, R. Comparison between W2 distance and Ḣ−1 norm, and localization of Wasserstein distance.
ESAIM Control Optim. Calc. Var. 24, 4 (2018), 1489–1501.

[97] Pooladian, A.-A., and Niles-Weed, J. Entropic estimation of optimal transport maps. arXiv preprint
arXiv:2109.12004 (2021).

[98] Protter, P. E. Stochastic integration and differential equations, 2nd ed. ed., vol. 21 of Appl. Math. (N.
Y.). Berlin: Springer, 2004.

[99] Puchkin, N., and Spokoiny, V. Structure-adaptive manifold estimation. Journal of Machine Learning
Research 23, 40 (2022), 1–62.
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[109] Stéphanovitch, A., Aamari, E., and Levrard, C. Wasserstein generative adversarial networks are
minimax optimal distribution estimators. Ann. Statist. 52, 5 (2024), 2167–2193.

[110] Tameling, C., Sommerfeld, M., and Munk, A. Empirical optimal transport on countable metric spaces:
Distributional limits and statistical applications.

[111] Tang, R., and Yang, Y. Minimax rate of distribution estimation on unknown submanifolds under
adversarial losses. The Annals of Statistics 51, 3 (2023), 1282–1308.

[112] Tao, T. Lecture notes 1 for 247a, 2006. Accessed: 2025-03-16.

[113] Tao, W., and Shi, Z. Convergence of laplacian spectra from random samples. Journal of Computational
Mathematics 38, 6 (2020), 952–984.

[114] Tenenbaum, J. B., De Silva, V., and Langford, J. C. A global geometric framework for nonlinear
dimensionality reduction. Science 290, 5500 (2000), 2319–2323.

[115] Ting, D., Huang, L., and Jordan, M. An analysis of the convergence of graph laplacians. ICML (2010).

[116] Tsybakov, A. B. Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New
York, 2009. Revised and extended from the 2004 French original, Translated by Vladimir Zaiats.

[117] Tyagi, H., Vural, E., and Frossard, P. Tangent space estimation for smooth embeddings of riemannian
manifolds®. Information and Inference: A Journal of the IMA 2, 1 (2013), 69–114.

[118] Uppal, A., Singh, S., and Poczos, B. Nonparametric density estimation & convergence rates for gans
under besov ipm losses. In Advances in Neural Information Processing Systems 32 (2019), pp. 15887–15897.

[119] Villani, C. Optimal transport, vol. 338 of Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

[120] Wang, F.-Y. Analysis for diffusion processes on Riemannian manifolds, vol. 18 of Advanced Series on
Statistical Science & Applied Probability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2014.

[121] Wang, F.-Y., and Zhu, J.-X. Limit theorems in Wasserstein distance for empirical measures of diffusion
processes on Riemannian manifolds. Ann. Inst. Henri Poincaré, Probab. Stat. 59, 1 (2023), 437–475.
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Table 4.1: Notation Table

Symbol Description

∆Rm Laplace operator of Rm, usually written as ∆ for
short if there is no ambiguity.

M A smooth manifold without boundary embed-
ded in Rm.

∆M Laplace (-Beltrami) operator of manifold M,
usually written as ∆ for short if there is no am-
biguity.

∇ Covariant derivative/ Affine connection/ Gradi-
ent operator on M.

Dt Covariant derivative along a curve.
d Dimension of M.
d,d∗ Exterior differentiation on M and its formal ad-

joint.∫
Y ◦ dW Stratonovich integral of Y against W .

F(M) Frame bundle of M .
O(M) Orthonormal frame bundle of M.
p Bundle projection.
(ei)i∈1;d The standard basis of Rd.
Hz(u) Horizontal lift of uz ∈ TpuM to u.
HZ Horizontal lift of Z ∈ Γ(TM) to a vector field

on F(M).
Hi Hei .
Γ(TM) Space of all smooth vector fields on M.
injM Injectivity radius of M.
JF · The absolute value of the Jacobian determinant

of function F .
exp, E Exponential map of M.
Ωk(M) Space of all smooth differential k-forms on M.
X(M) Space of all smooth vector fields on M.
F = (Ft)t≥0 Filtration of a filtered probability space.
B a Banach space
Lp the space of functions with finite Lp- norm
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Abstract and keywords

This thesis studies the connection between probability theory and differential geometry. These
two fields have many common ideas that can lead to new insights and applications in areas such
as physics, finance, and machine learning.
My work is divided into three main parts. First, we study random operators on smooth,
compact, and connected manifolds. We look at graph Laplacians, which are built from points
sampled on a manifold. Graph Laplacians act as discrete versions of the Laplace–Beltrami
operator, a fundamental object in differential geometry. We extend previous research by relaxing
the assumptions on the kernel functions used to construct these graphs. As a result, we are
able to prove uniform convergence rates for a wide range of kernel-induced random operators,
including those related to the k-nearest neighbor random walk. We then show that as the
number of sample points increases, the random walks on these graphs converge to diffusion
processes on the manifold. This result helps to explain how discrete models can approximate
continuous phenomena.
The second part of the thesis focuses on the long-time behavior of diffusion processes on mani-
folds. We study the occupation measures of these diffusion processes, which describe how much
time these processes spend in different regions of the manifold. By smoothing these measures
with an appropriate kernel, we can measure their convergence using the Wasserstein distance.
The smoothing improves the convergence rate with respect to the existing results, and we prove
that these rates are optimal in a minimax sense. This work is important for applications where
one needs to recover the geometric properties of a manifold from observed trajectories. Unlike
many previous studies that assume independent samples, our approach takes into account the
natural time dependence found in stochastic processes.
The third part revisits the problem of density estimation on manifolds. Density estimation is
a key problem in statistics, and it becomes more challenging when the data lie on a curved
space. Building on recent work, we extend the known results by proving that the minimax
convergence rates for density estimators still hold for a larger class of density functions. In
our analysis, we consider densities that are not necessarily bounded away from zero and that
may even have unbounded support. We use techniques from optimal transport theory and
nonparametric statistics to generalize previous results. This not only improves our theoretical
understanding but also has practical implications for data analysis in high-dimensional settings
where the data are believed to lie on a low-dimensional manifold.

Keywords: diffusion processes on manifolds, optimal transport, kernel smoothing, minimax
rate, limit theorems, random walks, differential geometry.
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Résumé et mot-clés

Cette thèse étudie le lien entre la théorie des probabilités et de la géométrie différentielle. Ces
deux domaines peuvent interagir pour conduire à de nouvelles idées et applications en physique,
finance, et machine learning.
Mon travail est divisé en trois parties. Premièrement, nous étudions les opérateurs aléatoires sur
les variétés lisses, compactes et connectées. Nous étudions les Laplaciens de graphe, qui sont
construits à partir de points échantillonnés sur une variété. Ces Laplaciens agissent comme
des versions discrètes de l’opérateur de Laplace-Beltrami, objet fondamental de la géométrie
différentielle. Nous étendons les recherches précédentes en assouplissant les hypothèses sur les
noyaux utilisées. Nous sommes ainsi en mesure de prouver des taux de convergence uniformes
pour une large classe d’opérateurs aléatoires induits par le noyau, y compris ceux liés à la marche
aléatoire du k-plus proches voisins le plus proche. Nous montrons ensuite que lors que le nombre
de points de l’échantillon augmente, les marches aléatoires sur ces graphes convergent vers des
processus de diffusion sur la variété. Ce résultat permet d’expliquer comment les modèles
discrets peuvent approcher des processus de diffusion continus.
La deuxième partie de la thèse se concentre sur le comportement en temps long des processus de
diffusion sur les variétés. Nous étudions les mesures d’occupation de ces processus, qui décrivent
le temps passé dans différentes régions de la variété. En lissant ces mesures avec un noyau
approprié, nous pouvons mesurer leur vitesse de convergence en distance de Wasserstein. Le
lissage améliore la vitesse de convergence par rapport aux résultats existants, et nous prouvons
que ces taux sont optimaux au sens minimax. Ce travail est important pour les applications
où l’on a besoin de récupérer les propriétés géométriques d’une variété à partir de trajectoires
l’explorant. Contrairement à de nombreuses études antérieures qui considèrent des échantillons
indépendants, notre approche prend en compte la dépendance temporelle naturelle que l’on
trouve dans les processus stochastiques.
La troisième partie revisite le problème de l’estimation de la densité sur les variétés. L’estimation
de la densité est un problème clé en statistique, et elle devient plus difficile lorsque les données
se trouvent sur un espace courbé. Nous étendons les résultats connus en prouvant que les taux
de convergence minimax pour les estimateurs de densité restent valables pour une classe plus
large de fonctions de densité. Dans notre analyse, nous considérons des densités qui ne sont
pas nécessairement minorée par une constante positive et qui peuvent de plus avoir un support
non borné. Nous utilisons des techniques de la théorie du transport optimal et de la statis-
tique non paramétrique pour généraliser les résultats précédents. Cela améliore non seulement
notre compréhension théorique, mais a également des implications pratiques pour l’analyse des
données dans des contextes à haute dimension où les données sont censées se situer sur une
variété de basse dimension.

Mot-clés: processus de diffusion sur les variétés, transport optimal, lissage par noyaux, vitesse
minimax , théorèmes limites, marches aléatoires, géométrie différentielle.
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